On~the classical solution of nonlinear elliptic equations of second order
Izvestiya. Mathematics , Tome 33 (1989) no. 3, pp. 597-612

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet problem $E(u_{x_ix_j},u_{x_i},u,x)=0$ in $\Omega\subset R^d$, $u=\varphi$ on $\partial\Omega$, is considered for nonlinear elliptic equations, including Bellman equations with “coefficients” in the Hölder space $C^{\alpha}(\overline\Omega)$. It is proved that if $\alpha>0$ is sufficiently small, then this problem is solvable in $C^{2+\alpha}_{\mathrm{loc}}(\Omega)\cap C(\overline\Omega)$. If in addition $\partial\Omega\in C^{2+\alpha}$ and $\varphi\in C^{2+\alpha}(\overline\Omega)$, then the solution belongs to $C^{2+\alpha}(\overline\Omega)$. Bibliography: 18 titles.
@article{IM2_1989_33_3_a6,
     author = {M. V. Safonov},
     title = {On~the classical solution of nonlinear elliptic equations of second order},
     journal = {Izvestiya. Mathematics },
     pages = {597--612},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a6/}
}
TY  - JOUR
AU  - M. V. Safonov
TI  - On~the classical solution of nonlinear elliptic equations of second order
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 597
EP  - 612
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a6/
LA  - en
ID  - IM2_1989_33_3_a6
ER  - 
%0 Journal Article
%A M. V. Safonov
%T On~the classical solution of nonlinear elliptic equations of second order
%J Izvestiya. Mathematics 
%D 1989
%P 597-612
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a6/
%G en
%F IM2_1989_33_3_a6
M. V. Safonov. On~the classical solution of nonlinear elliptic equations of second order. Izvestiya. Mathematics , Tome 33 (1989) no. 3, pp. 597-612. http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a6/