Exact asymptotics of the spectrum of a~boundary value problem, and periodic billiards
Izvestiya. Mathematics , Tome 33 (1989) no. 3, pp. 553-573

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-term asymptotic formula for the distribution function of the eigenvalues of an elliptic boundary value problem is derived. In contrast to previous work, it is not assumed that the set of points from which the periodic billiard trajectories emanate has measure zero. Bibliography: 21 titles.
@article{IM2_1989_33_3_a4,
     author = {Yu. G. Safarov},
     title = {Exact asymptotics of the spectrum of a~boundary value problem, and periodic billiards},
     journal = {Izvestiya. Mathematics },
     pages = {553--573},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a4/}
}
TY  - JOUR
AU  - Yu. G. Safarov
TI  - Exact asymptotics of the spectrum of a~boundary value problem, and periodic billiards
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 553
EP  - 573
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a4/
LA  - en
ID  - IM2_1989_33_3_a4
ER  - 
%0 Journal Article
%A Yu. G. Safarov
%T Exact asymptotics of the spectrum of a~boundary value problem, and periodic billiards
%J Izvestiya. Mathematics 
%D 1989
%P 553-573
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a4/
%G en
%F IM2_1989_33_3_a4
Yu. G. Safarov. Exact asymptotics of the spectrum of a~boundary value problem, and periodic billiards. Izvestiya. Mathematics , Tome 33 (1989) no. 3, pp. 553-573. http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a4/