Optimal control problems with delays of general form and with phase constraints
Izvestiya. Mathematics , Tome 33 (1989) no. 3, pp. 521-552.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary conditions for an extremum are obtained in the form of a maximum principle in the problem of optimal control of a system described by a differential equation with delays. It is assumed that phase constraints are present in the problem, and the delays in the controls are incommensurable in general. The indicated result is obtained using an abstract theory developed in the paper that is applicable to a large class of optimization problems, including various problems with phase constraints and delays. Bibliography: 19 titles.
@article{IM2_1989_33_3_a3,
     author = {A. S. Matveev},
     title = {Optimal control problems with delays of general form and with phase constraints},
     journal = {Izvestiya. Mathematics },
     pages = {521--552},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a3/}
}
TY  - JOUR
AU  - A. S. Matveev
TI  - Optimal control problems with delays of general form and with phase constraints
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 521
EP  - 552
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a3/
LA  - en
ID  - IM2_1989_33_3_a3
ER  - 
%0 Journal Article
%A A. S. Matveev
%T Optimal control problems with delays of general form and with phase constraints
%J Izvestiya. Mathematics 
%D 1989
%P 521-552
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a3/
%G en
%F IM2_1989_33_3_a3
A. S. Matveev. Optimal control problems with delays of general form and with phase constraints. Izvestiya. Mathematics , Tome 33 (1989) no. 3, pp. 521-552. http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a3/

[1] Kharatishvili G. L., “Printsip maksimuma v teorii optimalnykh protsessov s zapazdyvaniem”, Dokl. AN SSSR, 136 (1961), 39–42 | Zbl

[2] Gamkrelidze R. V., Kharatishvili G. L., “Ekstremalnye zadachi v lineinykh topologicheskikh prostranstvakh”, Izv. AN SSSR. Ser. matem., 33 (1969), 781–839 | MR | Zbl

[3] Kharatishvili G. L., Machaidze Z. A., Markozashvili N. I., Tadumadze T. A., Abstraktnaya variatsionnaya teoriya i ee primeneniya k optimalnym zadacham s zapazdyvaniem, Metsniereba, Tbilisi, 1973

[4] Kharatishvili G. L., Tadumadze T. A., “Nelineinye optimalnye sistemy upravleniya s peremennymi zapazdyvaniyami”, Matem. sb., 107(149) (1978), 613–633 | MR

[5] Warga J., “The reduction of certain control problems to an “ordinary differential” type”, SIAM Rev., 10 (1968), 219–222 | DOI | MR | Zbl

[6] Banks H. T., “Necessary conditions for control problems with variable time lags”, SIAM J. Control, 6 (1968), 9–47 | DOI | MR | Zbl

[7] Halanay A., “Optimal controls for systems with time lag”, SIAM J. Control, 6 (1968), 215–234 | DOI | MR | Zbl

[8] Beklaryan L. A., “Variatsionnaya zadacha s zapazdyvayuschim argumentom i ee svyaz s nekotoroi polugruppoi otobrazhenii otrezka v sebya”, Dokl. AN SSSR, 271:5 (1983), 1036–1040 | MR | Zbl

[9] Bunce G. R., “A maximum principle for time lag control problems with bounded state”, J. Optim. Theory and Appl., 22 (1977), 563–606 | DOI | MR | Zbl

[10] Matveev A. S., “K abstraktnoi teorii optimalnogo upravleniya sistemami s raspredelennymi parametrami”, Sibirsk. matem. zhurn., 29:1 (1988), 94–107

[11] Yakubovich V. A., “K abstraktnoi teorii optimalnogo upravleniya, II”, Sibirsk. matem. zhurn., 19:2 (1978), 436–460 | MR | Zbl

[12] Sadovskii B. N., “Predelno kompaktnye i uplotnyayuschie operatory”, Uspekhi matem. nauk, 27 (1972), 81–146 | MR | Zbl

[13] Goldenshtein L. S., Markus A. S., “O mere nekompaktnosti ogranichennykh mnozhestv i lineinykh operatorov”, Issledovaniya po algebre i matem. analizu, Kishinev, 1965, 45–54

[14] Shefer X., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[15] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR

[16] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[17] Tsubovitskii A. Ya., Milyutin A. A., “Zadachi na ekstremum pri nalichii ogranichenii”, Zhurn. vychisl. matem. i matem. fiziki, 5 (1965), 395–453

[18] Danford N., Shvarts Dzh. G., Lineinye operatory. Obschaya teoriya, V 3 t. T. 1, IL, M., 1962

[19] Kurosh A. G., Teoriya grupp, Nauka, M., 1967 | MR | Zbl