Affine curves of degree~6 and smoothings of a~nondegenerate sixth order singular point
Izvestiya. Mathematics , Tome 33 (1989) no. 3, pp. 501-520.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to an isotopic classification of plane nonsingular real affine curves of degree 6 with maximum number of ovals (ten) and to the establishment of a connection between these curves and smoothings (nonsingular perturbations) of a nondegenerate sixth order singular point. Of 120 isotopic types admissible by known restrictions, 32 types are realized and 69 types are prohibited. It is proved that every smoothing of a nondegenerate sixth order singular point is the image of an affine curve of degree 6 under a homomorphism of the plane onto a neighborhood of the singular point. Bibliography: 28 titles.
@article{IM2_1989_33_3_a2,
     author = {A. B. Korchagin and E. I. Shustin},
     title = {Affine curves of degree~6 and smoothings of a~nondegenerate sixth order singular point},
     journal = {Izvestiya. Mathematics },
     pages = {501--520},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a2/}
}
TY  - JOUR
AU  - A. B. Korchagin
AU  - E. I. Shustin
TI  - Affine curves of degree~6 and smoothings of a~nondegenerate sixth order singular point
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 501
EP  - 520
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a2/
LA  - en
ID  - IM2_1989_33_3_a2
ER  - 
%0 Journal Article
%A A. B. Korchagin
%A E. I. Shustin
%T Affine curves of degree~6 and smoothings of a~nondegenerate sixth order singular point
%J Izvestiya. Mathematics 
%D 1989
%P 501-520
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a2/
%G en
%F IM2_1989_33_3_a2
A. B. Korchagin; E. I. Shustin. Affine curves of degree~6 and smoothings of a~nondegenerate sixth order singular point. Izvestiya. Mathematics , Tome 33 (1989) no. 3, pp. 501-520. http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a2/

[1] Arnold V. I., “O raspolozhenii ovalov veschestvennykh ploskikh algebraicheskikh krivykh, involyutsiyakh chetyrekhmernykh gladkikh mnogoobrazii i arifmetike tselochislennykh kvadratichnykh form”, Funktsion. analiz i ego prilozh., 5:3 (1971), 1–9 | MR

[2] Arnold V. I., Varchenko A. N., Gusein-zade S. M., Osobennosti differentsiruemykh otobrazhenii, Nauka, M., 1982 | MR

[3] Viro O. Ya., “Skleivanie algebraicheskikh giperpoverkhnostei, ustraneniya osobennostei i postroenie krivykh”, Tr. Leningradskoi mezhdunarodnoi topologicheskoi konferentsii, Nauka, L., 1983, 149–197

[4] Viro O. Ya., Veschestvennye algebraicheskie mnogoobraziya s predpisannymi topologicheskimi svoistvami, Dis. $\dots$ dokt. fiz.-matem. nauk, L., 1983, 256 pp.

[5] Viro O. Ya., “Uspekhi v topologii veschestvennykh algebraicheskikh mnogoobrazii za poslednie shest let”, Uspekhi matem. nauk, 41:3 (1986), 45–6 | MR

[6] Viro O. Ya., Kharlamov V. M., “Sravneniya dlya veschestvennykh algebraicheskikh krivykh s osobennostyami”, Uspekhi matem. nauk, 35:4 (1980), 154–155

[7] Goryacheva T. V., Polotovskii G. M., Postroeniya $(M-1)$-krivykh 8-go poryadka, Dep. v VINITI 24.06.85, No 4441-85, Gork. gos. un-t, Gorkii, 1985, 30 pp.

[8] Gudkov D. A., “Topologiya veschestvennykh proektivnykh algebraicheskikh mnogoobrazii”, Uspekhi matem. nauk, 29:4 (1974), 3–79 | MR | Zbl

[9] Gudkov D. A., Nebukina G. F., “Tipy i formy krivykh 4-go poryadka”, Uspekhi matem. nauk, 40:5 (1985), 212

[10] Korchagin A. V., O reduktsii osobennostei i o klassifikatsii neosobykh affinnykh krivykh stepeni 6, Dep. v VINITI 14.02.86, No 1107-V, Gork. gos. un-t, Gorkii, 1986, 16 pp.

[11] Milnor Dzh., Osobye tochki kompleksnykh giperpoverkhnostei, Mir, M., 1971 | MR | Zbl

[12] Matematicheskie raboty I. Nyutona, M., L., 1937

[13] Polotovskii G. M., “Katalog $M$-raspadayuschikhsya krivykh 6-go poryadka”, Dokl. AN SSSR, 236:3 (1977), 548–551 | MR | Zbl

[14] Polotovskii G. M., “$(M-1)$- i $(M-2)$-raspadayuschiesya krivye 6-go poryadka”, Metody kachestvennoi teorii differentsialnykh uravnenii, Gorkii, 1978, 130–148 | Zbl

[15] Polotovskii G. M., $(M-2)$-krivye 8-go poryadka: postroeniya, otkrytye voprosy, Dep. v VINITI 13.02.85, No 1185-85., Gork. gos. un-t, Gorkii, 1985, 194 pp.

[16] Rokhlin V. A., “Sravneniya po modulyu 16 v 16-i probleme Gilberta”, Funkts. analiz i ego prilozh., 6:4 (1972), 58–64 | MR | Zbl

[17] Rokhlin V. A., “Kompleksnye topologicheskie kharakteristiki veschestvennykh algebraicheskikh krivykh”, Uspekhi matem. nauk, 33:5 (1978), 77–89 | MR | Zbl

[18] Fidler T., “Puchki pryamykh i topologiya veschestvennykh algebraicheskikh krivykh”, Izv. AN SSSR. Ser. matem., 46:4 (1982), 853–863 | MR | Zbl

[19] Chislenko Yu. S., “$M$-krivye desyatoi stepeni”, Zap. nauch. semin. LOMI, 122, 1982, 147–162 | MR

[20] Shustin E. I., “Metod Gilberta–Roona i ustraneniya osobykh tochek veschestvennykh algebraicheskikh krivykh”, Dokl. AN SSSR, 281:1 (1985), 33–36 | MR | Zbl

[21] Shustin E. I., “Skleivanie osobykh algebraicheskikh krivykh”, Metody kachestvennoi teorii differentsialnykh uravnenii, Gorkii, 1985, 116–128 | MR

[22] Shustin E. I., “Versalnye deformatsii v prostranstve krivykh fiksirovannoi stepeni”, Funkts. analiz i ego prilozh., 21:1 (1987), 90–91 | MR | Zbl

[23] Shustin E. I., “Novaya $M$-krivaya 8-i stepeni”, Matem. zametki, 42:2 (1987), 180–186 | MR | Zbl

[24] Chevallier B., “A propos des courbes de degree 6”, C.A. Acad. Sci. Ser. A, 302:1 (1986), 33–38 | MR | Zbl

[25] Fiedler T., “Eine Beschänkung für die Lage von reelen ebenen algebraischen Kurven”, Beiträge zur Algebra und Geometrie, 1981, no. 11, 7–19 | MR | Zbl

[26] Hilbert D., “Ueber reellen Züge algebraischer Kurven”, Math. Ann., 38 (1891), 115–138 | DOI | MR

[27] Van der Waerden B. L., Einfuhrung in die algebraische Geometrie, Springer, Berlin, 1974

[28] Wilson G., “Hilbert's sixteenth problem”, Topology, 17:1 (1978), 53–73 | DOI | MR | Zbl