Affine curves of degree~6 and smoothings of a~nondegenerate sixth order singular point
Izvestiya. Mathematics , Tome 33 (1989) no. 3, pp. 501-520

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to an isotopic classification of plane nonsingular real affine curves of degree 6 with maximum number of ovals (ten) and to the establishment of a connection between these curves and smoothings (nonsingular perturbations) of a nondegenerate sixth order singular point. Of 120 isotopic types admissible by known restrictions, 32 types are realized and 69 types are prohibited. It is proved that every smoothing of a nondegenerate sixth order singular point is the image of an affine curve of degree 6 under a homomorphism of the plane onto a neighborhood of the singular point. Bibliography: 28 titles.
@article{IM2_1989_33_3_a2,
     author = {A. B. Korchagin and E. I. Shustin},
     title = {Affine curves of degree~6 and smoothings of a~nondegenerate sixth order singular point},
     journal = {Izvestiya. Mathematics },
     pages = {501--520},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a2/}
}
TY  - JOUR
AU  - A. B. Korchagin
AU  - E. I. Shustin
TI  - Affine curves of degree~6 and smoothings of a~nondegenerate sixth order singular point
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 501
EP  - 520
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a2/
LA  - en
ID  - IM2_1989_33_3_a2
ER  - 
%0 Journal Article
%A A. B. Korchagin
%A E. I. Shustin
%T Affine curves of degree~6 and smoothings of a~nondegenerate sixth order singular point
%J Izvestiya. Mathematics 
%D 1989
%P 501-520
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a2/
%G en
%F IM2_1989_33_3_a2
A. B. Korchagin; E. I. Shustin. Affine curves of degree~6 and smoothings of a~nondegenerate sixth order singular point. Izvestiya. Mathematics , Tome 33 (1989) no. 3, pp. 501-520. http://geodesic.mathdoc.fr/item/IM2_1989_33_3_a2/