A~polynomial approximation method for the solution of a~boundary value problem and its derivatives for linear ordinary differential equations
Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 391-402.

Voir la notice de l'article provenant de la source Math-Net.Ru

Effective algorithms are proposed for the construction of polynomials of asymptotically best approximation of the solution of a boundary value problem and its derivatives for linear differential equations with polynomial coefficients. Bibliography: 7 titles.
@article{IM2_1989_33_2_a8,
     author = {V. K. Dzyadyk and L. A. Ostrovetskii},
     title = {A~polynomial approximation method for the solution of a~boundary value problem and its derivatives for linear ordinary differential equations},
     journal = {Izvestiya. Mathematics },
     pages = {391--402},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a8/}
}
TY  - JOUR
AU  - V. K. Dzyadyk
AU  - L. A. Ostrovetskii
TI  - A~polynomial approximation method for the solution of a~boundary value problem and its derivatives for linear ordinary differential equations
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 391
EP  - 402
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a8/
LA  - en
ID  - IM2_1989_33_2_a8
ER  - 
%0 Journal Article
%A V. K. Dzyadyk
%A L. A. Ostrovetskii
%T A~polynomial approximation method for the solution of a~boundary value problem and its derivatives for linear ordinary differential equations
%J Izvestiya. Mathematics 
%D 1989
%P 391-402
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a8/
%G en
%F IM2_1989_33_2_a8
V. K. Dzyadyk; L. A. Ostrovetskii. A~polynomial approximation method for the solution of a~boundary value problem and its derivatives for linear ordinary differential equations. Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 391-402. http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a8/

[1] Krylov Ya. M., “Metody priblizhennogo resheniya zadach matematicheskoi fiziki”, Izbrannye trudy, 2, AN USSR, Kiev, 1961, 150–205

[2] Dzyadyk V. K., Ostrovetskii L. A., Priblizhenie mnogochlenami reshenii kraevykh zadach dlya obyknovennykh lineinykh differentsialnykh uravnenii, Preprint No 85.11, IM AN USSR, Kiev, 1985, 32 pp. | MR | Zbl

[3] Dzyadyk V. K., “Approksimatsionnyi metod priblizheniya algebraicheskimi mnogochlenami reshenii lineinykh differentsialnykh uravnenii”, Izv. AN SSSR. Ser. matem., 38:4 (1974), 937–967 | MR | Zbl

[4] Myuntts G., Integralnye uravneniya. Ch. 1. Lineinye uravneniya Volterra, Gostekhizdat, M., L, 1934, 330 pp.

[5] Dzyadyk V. K., “On a problem of Chebyshev and Markov”, Analysis Mathematica, 3:3 (1977), 171–175 | DOI | MR | Zbl

[6] Bernshtein S. N., “Ob odnom klasse ortogonalnykh mnogochlenov”, Sobr. soch., t. 1, AN SSSR, M., 1952, 452–465

[7] Akhiezer Ya. I., Lektsii po teorii approksimatsii, Nauka, M., 1965, 290–294 | MR