On~expansion of analytic functions in exponential series
Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 317-329.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be an arbitrary convex domain in the $p$-dimensional ($p\in\mathbf N$) complex space $\mathbf C^p$, and $H(G)$ the space of single-valued analytic functions on $G$, endowed with the topology $\tau_G$ of uniform convergence on compact subsets of $G$. In this paper the following assertion is obtained (as a corollary to a more general result proved here) for a bounded domain $G$: if a sequence $\{E_n\}_{n\in\mathbf N}$ of closed subspaces of $H(G)$ that are invariant under each partial differentiation $\frac{\partial}{\partial z_k}$ ($k=1,\dots,p$) has the property that every function locally analytic on $\overline G$ can be represented as a series \begin{equation} \sum_{n=1}^\infty x_n(z),\qquad x_n(z)\in E_n,\quad\forall\,n\in\mathbf N, \end{equation} convergent (absolutely convergent) in the topology $\tau_G$, then any function in $H(G)$ can be expanded in a series (1) convergent (absolutely convergent) in $\tau_G$. Bibliography: 21 titles.
@article{IM2_1989_33_2_a4,
     author = {S. N. Melikhov},
     title = {On~expansion of analytic functions in exponential series},
     journal = {Izvestiya. Mathematics },
     pages = {317--329},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a4/}
}
TY  - JOUR
AU  - S. N. Melikhov
TI  - On~expansion of analytic functions in exponential series
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 317
EP  - 329
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a4/
LA  - en
ID  - IM2_1989_33_2_a4
ER  - 
%0 Journal Article
%A S. N. Melikhov
%T On~expansion of analytic functions in exponential series
%J Izvestiya. Mathematics 
%D 1989
%P 317-329
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a4/
%G en
%F IM2_1989_33_2_a4
S. N. Melikhov. On~expansion of analytic functions in exponential series. Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 317-329. http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a4/

[1] Leontev A. F., Ryady eksponent, Nauka, M., 1976 | MR

[2] Melnik Yu. I., “K voprosu o predstavlenii regulyarnykh funktsii ryadami Dirikhle”, Matem. zametki, 21:5 (1977), 641–651 | MR | Zbl

[3] Leontev A. F., “O predstavlenii analiticheskikh funktsii ryadami eksponent v politsilindricheskoi oblasti”, Matem. sb., 100:3 (1976), 364–384 | MR

[4] Le Khai Khoi, “Predstavitelnye podprostranstva i effektivnye predstavlyayuschie sistemy”, Matematicheskii analiz i ego prilozheniya, RGU, Rostov-na-Donu, 1985, 72–80

[5] Korobeinik Yu. F., “Predstavlyayuschie sistemy”, Uspekhi matem. nauk, 36:1 (1981), 73–126 | MR | Zbl

[6] Korobeinik Yu. F., “Interpolyatsionnye zadachi, netrivialnye razlozheniya nulya i predstavlyayuschie sistemy”, Izv. AN SSSR, Ser. matem., 44:5 (1980), 1066–1114 | MR | Zbl

[7] Abanin A. V., “O raspredelenii effektivnykh mnozhestv i vnutr prodolzhaemosti predstavlyayuschikh sistem Mittag-Lefflera”, Matem. zametki, 33:5 (1983), 657–668 | MR | Zbl

[8] Korobeinik Yu. F., “Nekotorye voprosy teorii predstavlyayuschikh sistem”, Teoriya funktsii i priblizhenii, Trudy Saratovskoi zimnei shkoly: Mezhvuz. nauchn. sb., SGU, Saratov, 1983, 3–16 | MR

[9] Abanin A. V., Nekotorye svoistva predstavlyayuschikh sistem i bazisov, Dis. $\dots$ kand. fiz.-matem. nauk, Rostov-na-Donu, 1981 | Zbl

[10] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959 | MR

[11] Korobeinik Yu. F., “O predstavlyayuschikh sistemakh podprostranstv”, Matem. zametki, 38:5 (1985), 741–755 | MR | Zbl

[12] Melikhov S. N., O nekotorykh predstavitelnykh podprostranstvakh prostranstv analiticheskikh funktsii, RZh Matem. 1986. 8B184. 42 s. Dep. v VINITI 24.03.86 No 1930-V

[13] Leontev A. F., “Ob interpolirovanii v klasse tselykh funktsii konechnogo poryadka normalnogo tipa”, Dokl. AN SSSR, 66:2 (1949), 153–156 | MR

[14] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969

[15] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR

[16] Robertson A., Robertson V. Dzh., Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl

[17] Shefer X., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[18] Morzhakov V. V., “Ob uravneniyakh svertki v prostranstvakh funktsii, golomorfnykh v vypuklykh oblastyakh i na vypuklykh kompaktakh v $\mathbf{C}^n$”, Matem. zametki, 16:3 (1974), 431–440 | Zbl

[19] Morzhakov V. V., Absolyutno predstavlyayuschie sistemy eksponent v prostranstvakh analiticheskikh funktsii mnogikh kompleksnykh peremennykh, RZh matem. 1981. 4B108. Dep. v VINITI 6.01.81, No 245-81

[20] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR

[21] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956