Action of biregular automorphisms of the affine plane on pairs of matrices
Izvestiya. Mathematics, Tome 33 (1989) no. 2, pp. 433-439
Cet article a éte moissonné depuis la source Math-Net.Ru
A study is made of the natural action of the group of biregular automorphisms of the affine plane on pairs of square matrices and pairs of symmetric square matrices. It is proved that in the open set of pairs $(A,B)$ such that $A$ is semisimple and $A$ and $B$ have no common invariant subspaces, the commutator $[A,B]=AB-BA$ is the unique invariant in both cases. Bibliography: 3 titles.
@article{IM2_1989_33_2_a12,
author = {I. V. Artamkin},
title = {Action of biregular automorphisms of the affine plane on pairs of matrices},
journal = {Izvestiya. Mathematics},
pages = {433--439},
year = {1989},
volume = {33},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a12/}
}
I. V. Artamkin. Action of biregular automorphisms of the affine plane on pairs of matrices. Izvestiya. Mathematics, Tome 33 (1989) no. 2, pp. 433-439. http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a12/
[1] Huleck K., “On the classification of stable rank-$r$ vector bundles over the projective plane”, Proceedings of the Nice Conference 1979 on Vector Bundles and Differential Equations, Progress in Mathematics, 7, Birkhauser, 1980 | MR
[2] Shafarevisch I. R., “On some infinitedimensional groups”, Simposio Internazionale di Geometria Algebrica, Roma, 1967, 208–212
[3] Shafarevich I. R., “O nekotorykh beskonechnomernykh gruppakh, II”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 214–226 | MR | Zbl