Multilinear identities in Lie rings associated with periodic groups
Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 413-423

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a complete basis is found for the system of multilinear identities of the Lie algebra $L(B(\infty,q))$ associated with a free periodic group $B(\infty,q)$ of countable rank and of arbitrary exponent $q\in\mathbf N$. This result is a generalization of one of Vaughan-Lee for groups of prime exponent. Bibliography: 7 titles.
@article{IM2_1989_33_2_a10,
     author = {N. N. Repin},
     title = {Multilinear identities in {Lie} rings associated with periodic groups},
     journal = {Izvestiya. Mathematics },
     pages = {413--423},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a10/}
}
TY  - JOUR
AU  - N. N. Repin
TI  - Multilinear identities in Lie rings associated with periodic groups
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 413
EP  - 423
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a10/
LA  - en
ID  - IM2_1989_33_2_a10
ER  - 
%0 Journal Article
%A N. N. Repin
%T Multilinear identities in Lie rings associated with periodic groups
%J Izvestiya. Mathematics 
%D 1989
%P 413-423
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a10/
%G en
%F IM2_1989_33_2_a10
N. N. Repin. Multilinear identities in Lie rings associated with periodic groups. Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 413-423. http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a10/