Multilinear identities in Lie rings associated with periodic groups
Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 413-423
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper a complete basis is found for the system of multilinear identities of the Lie algebra $L(B(\infty,q))$ associated with a free periodic group $B(\infty,q)$ of countable rank and of arbitrary exponent $q\in\mathbf N$. This result is a generalization of one of Vaughan-Lee for groups of prime exponent.
Bibliography: 7 titles.
@article{IM2_1989_33_2_a10,
author = {N. N. Repin},
title = {Multilinear identities in {Lie} rings associated with periodic groups},
journal = {Izvestiya. Mathematics },
pages = {413--423},
publisher = {mathdoc},
volume = {33},
number = {2},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a10/}
}
N. N. Repin. Multilinear identities in Lie rings associated with periodic groups. Izvestiya. Mathematics , Tome 33 (1989) no. 2, pp. 413-423. http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a10/