Multilinear identities in Lie rings associated with periodic groups
Izvestiya. Mathematics, Tome 33 (1989) no. 2, pp. 413-423
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper a complete basis is found for the system of multilinear identities of the Lie algebra $L(B(\infty,q))$ associated with a free periodic group $B(\infty,q)$ of countable rank and of arbitrary exponent $q\in\mathbf N$. This result is a generalization of one of Vaughan-Lee for groups of prime exponent. Bibliography: 7 titles.
@article{IM2_1989_33_2_a10,
author = {N. N. Repin},
title = {Multilinear identities in {Lie} rings associated with periodic groups},
journal = {Izvestiya. Mathematics},
pages = {413--423},
year = {1989},
volume = {33},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a10/}
}
N. N. Repin. Multilinear identities in Lie rings associated with periodic groups. Izvestiya. Mathematics, Tome 33 (1989) no. 2, pp. 413-423. http://geodesic.mathdoc.fr/item/IM2_1989_33_2_a10/
[1] Vaughan-Lee M. R., “The restricted Burnside problem” (Part 2), The Bull. of the London Math. Soc., 17:65 (1985), 113–133 | DOI | MR | Zbl
[2] Magnus V., Karras L., Soliter D., Kombinatornaya teoriya grupp, Nauka, M., 1974 | MR | Zbl
[3] Kholl M., Teoriya grupp, IL, M., 1962
[4] Lazard M., “Sur les algèbres enveloppantes universelles de certaines algèbres de Lie”, Publ. Sci. Univ. Alger. Sér A, 1 (1954), 281–294 | MR
[5] Kostrikin A. I., Vokrug Bernsaida, Nauka, M., 1986 | MR
[6] Wall G. E., “On the multilinear identities which hold in the Lie ring of a group of prime – power exponent”, J. of Algebra, 104:1 (1986), 1–22 | DOI | MR | Zbl
[7] Wall G. E., “Multilinear Lie relators for varieties of groups” (to appear)