Geodesics on the two-dimensional torus with two rotation numbers
Izvestiya. Mathematics , Tome 33 (1989) no. 1, pp. 101-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

Geodesies with two arbitrary predetermined rotation numbers are constructed for Riemannian metrics on the two-dimensional torus that satisfy a special nonintegrability condition. Each of the geodesics constructed is asymptotic to two minimal geodesics with these rotation numbers and is a union of two minimal semigeodesics outside some segment of finite length. Bibliography: 8 titles.
@article{IM2_1989_33_1_a4,
     author = {L. V. Polterovich},
     title = {Geodesics on the two-dimensional torus with two rotation numbers},
     journal = {Izvestiya. Mathematics },
     pages = {101--114},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_1_a4/}
}
TY  - JOUR
AU  - L. V. Polterovich
TI  - Geodesics on the two-dimensional torus with two rotation numbers
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 101
EP  - 114
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_33_1_a4/
LA  - en
ID  - IM2_1989_33_1_a4
ER  - 
%0 Journal Article
%A L. V. Polterovich
%T Geodesics on the two-dimensional torus with two rotation numbers
%J Izvestiya. Mathematics 
%D 1989
%P 101-114
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_33_1_a4/
%G en
%F IM2_1989_33_1_a4
L. V. Polterovich. Geodesics on the two-dimensional torus with two rotation numbers. Izvestiya. Mathematics , Tome 33 (1989) no. 1, pp. 101-114. http://geodesic.mathdoc.fr/item/IM2_1989_33_1_a4/

[1] Byalyi M. L., Polterovich L. V., “Geodezicheskie potoki na dvumernom tore i fazovye perekhody “soizmerimost-nesoizmerimost””, Funkts. analiz i ego prilozh., 20:4 (1986), 9–16 | MR | Zbl

[2] Goroff D. L., “Hyperbolic sets for twist maps”, Ergodic Th. Dynam. Syst., 5 (1985), 337–339 | MR | Zbl

[3] Morse M., “A fundamental class of geodesies on any closed surface of genus greater then one”, Trans. Amer. Math. Soc., 26:1 (1924), 25–60 | DOI | MR | Zbl

[4] Series C., “The geometry of Markoff numbers”, The Math. Intelligencer, 7:3 (1985), 20–29 | DOI | MR | Zbl

[5] Sinai Ya. G., Khanin K. M., “Metody renormalizatsionnoi gruppy v teorii dinamicheskikh sistem”, Tr. Mezhdunarodnoi konferentsii “Renormgruppa-86” (Dubna, 1986)

[6] Hedlund G., “Geodesies on a two-dimensional Riemannian manifold with periodic coefficients”, Ann. of Math. Ser. 2, 33:4 (1932), 719–739 | DOI | MR | Zbl

[7] Birman J. S., Series C., “An algorithm for simple curves on surfaces”, J. London Math. Soc., 29 (1984), 331–342 | DOI | MR | Zbl

[8] Osborne R. P., Zieschang H., “Primitives in the free group on two generators”, Invent. Math., 63 (1981), 17–24 | DOI | MR | Zbl