Closed geodesics, asymptotic volume, and characteristics of group growth
Izvestiya. Mathematics , Tome 33 (1989) no. 1, pp. 1-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

A function $N_g(t)$ equal to the number of closed geodesics of length not greater than $t$ is considered on the Riemannian manifold $(M,g)$. Also considered are related questions on the behavior of the volume function for a geodesic ball on the universal covering manifold. Bibliography: 20 titles.
@article{IM2_1989_33_1_a0,
     author = {I. K. Babenko},
     title = {Closed geodesics, asymptotic volume, and characteristics of group growth},
     journal = {Izvestiya. Mathematics },
     pages = {1--37},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_33_1_a0/}
}
TY  - JOUR
AU  - I. K. Babenko
TI  - Closed geodesics, asymptotic volume, and characteristics of group growth
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 1
EP  - 37
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_33_1_a0/
LA  - en
ID  - IM2_1989_33_1_a0
ER  - 
%0 Journal Article
%A I. K. Babenko
%T Closed geodesics, asymptotic volume, and characteristics of group growth
%J Izvestiya. Mathematics 
%D 1989
%P 1-37
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_33_1_a0/
%G en
%F IM2_1989_33_1_a0
I. K. Babenko. Closed geodesics, asymptotic volume, and characteristics of group growth. Izvestiya. Mathematics , Tome 33 (1989) no. 1, pp. 1-37. http://geodesic.mathdoc.fr/item/IM2_1989_33_1_a0/

[1] Milnor J., “Problem 5603”, Amer. Mat. Monthly, 75:6 (1968), 685–686 | DOI | MR

[2] Gromov M., “Groups of polinomial growth and expandings maps”, Publ. Math. IHES, 1981, 53–73 | MR

[3] Grigorchuk R. I., “K probleme Milnora o gruppovom roste”, Dokl. AN SSSR, 271:1 (1983), 30–33 | MR | Zbl

[4] Babenko I. K., “Problemy rosta i ratsionalnosti v algebre i topologii”, Uspekhi matem. nauk, 41:2 (1986), 95–142 | MR | Zbl

[5] Katok A., “Entropy and clozed geodesics”, Ergodic Theory Dynam. Systems, 2:339–367 (1982) | MR

[6] Katok A., Clozed geodesies on the Torus, Preprint | MR

[7] Shvarts A. S., “Ob'emnyi invariant nakryvayuschikh”, Dokl. AN SSSR, 105:1 (1955), 32–34 | MR | Zbl

[8] Kourovskaya tetrad, izd. 7-e, Novosibirsk, 1980

[9] Mannig A., “Topological entropy for geodesic flows”, Ann. of Math., 110 (1979), 567–573 | DOI | MR

[10] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1972 | MR | Zbl

[11] Bangert V., “Geodätische Linien auf Riemannschen Manningfaltigkeiten”, Jahresber. Dtsch. Math. Ver., 87:2 (1985), 39–66 | MR | Zbl

[12] Ballman W., Thorbergsson G., Ziller W., “Clozed geodesies and the fundamental Group”, Duke. Math. J., 48:3 (1981), 585–588 | DOI | MR | Zbl

[13] Bangert V., Hingston N., “Clozed geodesies on Manifolds with infinite abelian fundamental group”, J. of Diff. Geom., 19:2 (1984), 277–282 | MR | Zbl

[14] Vinogradov I. M., Osnovy teorii chisel, GITTL, M., L., 1952

[15] Gromov M., “Filling riemannian manifolds”, J. Diff. Geom., 18:1 (1983), 1–147 | MR | Zbl

[16] Maltsev A. I., “Ob odnom klasse odnorodnykh prostranstv”, Izv. AN SSSR. Ser. matem., 13:1 (1949), 9–32

[17] Thomas C., “Nilpotent groups and compact $3$-manifolds”, Proc. Cambridge Phil. Soc., 64:2 (1968), 303–306 | DOI | MR | Zbl

[18] Benson M., “Growth series of finite extension of $\mathbf{Z}^n$ are Rational”, Invent. Math., 73:2 (1983), 251–270 | DOI | MR

[19] Ballman W., “Geschlossen Geodätische auf Mannigfaltigkeiten mit Unendlicher fundamentalgruppe”, Topology, 25:1 (1986), 55–69 | DOI | MR | Zbl

[20] Pansu P., “Croissance des boules et des géodésiques fermées dans les nilvariétés”, Ergodic Theory Dynam. Systems, 1983, no. 3, 415–445 | MR | Zbl