Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1989_32_3_a9, author = {A. E. Tumanov}, title = {Finite-dimensionality of the group of $CR$~automorphisms of a~standard $CR$~manifold, and proper holomorphic mappings of {Siegel} domains}, journal = {Izvestiya. Mathematics }, pages = {655--662}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {1989}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a9/} }
TY - JOUR AU - A. E. Tumanov TI - Finite-dimensionality of the group of $CR$~automorphisms of a~standard $CR$~manifold, and proper holomorphic mappings of Siegel domains JO - Izvestiya. Mathematics PY - 1989 SP - 655 EP - 662 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a9/ LA - en ID - IM2_1989_32_3_a9 ER -
%0 Journal Article %A A. E. Tumanov %T Finite-dimensionality of the group of $CR$~automorphisms of a~standard $CR$~manifold, and proper holomorphic mappings of Siegel domains %J Izvestiya. Mathematics %D 1989 %P 655-662 %V 32 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a9/ %G en %F IM2_1989_32_3_a9
A. E. Tumanov. Finite-dimensionality of the group of $CR$~automorphisms of a~standard $CR$~manifold, and proper holomorphic mappings of Siegel domains. Izvestiya. Mathematics , Tome 32 (1989) no. 3, pp. 655-662. http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a9/
[1] Tumanov A. E., Geometriya $CR$-mnogoobrazii, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 9, VINITI, M., 1986
[2] Naruki I., “Holomorphic extension problem for standard real submanifolds of second kind”, Publ. Res. Inst. Math. Kyoto Univ., 6 (1970), 113–187 | DOI | MR | Zbl
[3] Tumanov A. E., Khenkin G. M., “Lokalnaya kharakterizatsiya golomorfnykh avtomorfizmov oblastei Zigelya”, Funktsion. analiz, 17:4 (1983), 49–81 | MR
[4] Tanaka N., “On infinitesimal automorphisms of Siegel domains”, J. Math. Soc. Japan, 22:2 (1970), 180–212 | MR | Zbl
[5] Tumanov A. E., Khenkin G. M., “Sobstvennye otobrazheniya oblastei Zigelya”, Kompleksnye metody v matematicheskoi fizike. Vsesoyuznaya shkola molodykh uchenykh, Donetsk, 1984, 185
[6] Airapetyan R. A., Khenkin G. M., “Integralnye predstavleniya differentsialnykh form na mnogoobraziyakh Koshi–Rimana i teoriya $CR$-funktsii, II”, Matem. sb., 127:1 (1985), 92–112 | MR | Zbl
[7] Webster S. M., “Holomorphic mappings of domains with generic corners”, Proc. Amer. Math. Soc., 86:2 (1982), 236–240 | DOI | MR | Zbl
[8] Pyatetskii-Shapiro I. I., Geometriya klassicheskikh oblastei i teoriya avtomorfnykh funktsii, Nauka, M., 1961, 191 pp. | MR
[9] Alexander H., “Holomorphic mappings from the ball and polydisc”, Math. Ann., 209 (1974), 249–256 | DOI | MR | Zbl
[10] Bell S., “Proper holomorphic mapping and the Bergman projection”, Duke Math. J., 48:1 (1981), 167–175 | DOI | MR | Zbl
[11] Bell S., “Proper holomorphic mapping between circular domains”, Comm. Math. Helv., 57:4 (1982), 532–538 | DOI | MR | Zbl
[12] Tumanov A. E., Khenkin G. M., “Lokalnaya kharakterizatsiya analiticheskikh avtomorfizmov klassicheskikh oblastei”, Dokl. AN SSSR, 267:4 (1982), 794–796 | MR
[13] Fuks B. A., Spetsialnye glavy teorii analiticheskikh funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1983, 427 pp. | Zbl
[14] Beloshapka V. K., “Konechnomernost gruppy avtomorfizmov veschestvenno analiticheskoi poverkhnosti”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 437–442 | MR | Zbl