On~some uniqueness properties of multiple trigonometric series and harmonic functions
Izvestiya. Mathematics , Tome 32 (1989) no. 3, pp. 627-654.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some uniqueness theorems for multiple trigonometric series $\sum_na_ne^{2\pi inx}$ are established, where the an are bounded and tend to zero, when all the coordinates of the vector $n$ tend to infinity. Some boundary uniqueness properties for $m$-harmonic functions are also established. Bibliography: 8 titles.
@article{IM2_1989_32_3_a8,
     author = {A. A. Talalyan},
     title = {On~some uniqueness properties of multiple trigonometric series and harmonic functions},
     journal = {Izvestiya. Mathematics },
     pages = {627--654},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a8/}
}
TY  - JOUR
AU  - A. A. Talalyan
TI  - On~some uniqueness properties of multiple trigonometric series and harmonic functions
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 627
EP  - 654
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a8/
LA  - en
ID  - IM2_1989_32_3_a8
ER  - 
%0 Journal Article
%A A. A. Talalyan
%T On~some uniqueness properties of multiple trigonometric series and harmonic functions
%J Izvestiya. Mathematics 
%D 1989
%P 627-654
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a8/
%G en
%F IM2_1989_32_3_a8
A. A. Talalyan. On~some uniqueness properties of multiple trigonometric series and harmonic functions. Izvestiya. Mathematics , Tome 32 (1989) no. 3, pp. 627-654. http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a8/

[1] Cohen P. J., Topics in the theory of uniqueness of trigonometrical series, Thesis, University of Chicago, 1958, III | Zbl

[2] Shapiro V. L., “Uniqueness of multiply trigonometrical series”, Ann. Math., 66:3 (1957), 467–480 | DOI | MR | Zbl

[3] Ash J., Welland G., “Convergence, summability and uniqueness of multiple trigonometric series”, Trans. Amer. Math. Soc., 163 (1972), 401–445 | DOI | MR

[4] Zhizhiashvili L. V., “O nekotorykh voprosakh iz teorii prostykh i kratnykh trigonometricheskikh i ortogonalnykh ryadov”, Uspekhi matem. nauk, 28:2 (1973), 65–119 | MR

[5] Arutyunyan F. G., Talalyan A. A., “O edinstvennosti ryadov po sistemam Khaara i Uolsha”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1391–1408 | MR | Zbl

[6] Talalyan A. A., “O edinstvennosti dvoinykh trigonometricheskikh ryadov”, Izv. AN ArmSSR. Matematika, 20:6 (1985), 426–462 | MR | Zbl

[7] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | MR | Zbl

[8] Zigmund A., Trigonometricheskie ryady, t. II, Mir, M., 1965 | MR