On~the symbols of degenerate elliptic differential and hypoelliptic pseudodifferential operators
Izvestiya. Mathematics , Tome 32 (1989) no. 3, pp. 543-561.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author presents a general method of reducing the study of various degenerate operators to that of model operators with quasihomogeneous symbols whose hypoellipticity conditions are formulated in terms of an auxiliary operator-valued symbol. A set of symbols is constructed whose invertibility implies hypoellipticity. Bibliography: 13 titles.
@article{IM2_1989_32_3_a4,
     author = {S. Z. Levendorskii},
     title = {On~the symbols of degenerate elliptic differential and hypoelliptic pseudodifferential operators},
     journal = {Izvestiya. Mathematics },
     pages = {543--561},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a4/}
}
TY  - JOUR
AU  - S. Z. Levendorskii
TI  - On~the symbols of degenerate elliptic differential and hypoelliptic pseudodifferential operators
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 543
EP  - 561
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a4/
LA  - en
ID  - IM2_1989_32_3_a4
ER  - 
%0 Journal Article
%A S. Z. Levendorskii
%T On~the symbols of degenerate elliptic differential and hypoelliptic pseudodifferential operators
%J Izvestiya. Mathematics 
%D 1989
%P 543-561
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a4/
%G en
%F IM2_1989_32_3_a4
S. Z. Levendorskii. On~the symbols of degenerate elliptic differential and hypoelliptic pseudodifferential operators. Izvestiya. Mathematics , Tome 32 (1989) no. 3, pp. 543-561. http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a4/

[1] Boutet de Monvel L., “Boundary problems for pseudodifferential operafors”, Acta Math., 126 (1971), 11–51 | DOI | MR | Zbl

[2] Hormander L., “Fourier Integral operators, 1”, Acta Math., 127 (1971), 79–183 | DOI | MR

[3] Triebel H., Interpolation theory Function spaces Differential operators, Berlin, 1978 | MR

[4] Levendorskii S. Z., “Asimptoticheskoe raspredelenie sobstvennykh znachenii”, Izv. AN SSSR. Ser. matem., 46:4 (1982), 810–852 | MR | Zbl

[5] Grushin V. V., “Ob odnom klasse ellipticheskikh psevdodifferentsialnykh operatorov, vyrozhdayuschikhsya na podmnogoobrazii”, Matem. sb., 84:2 (1971), 163–195 | Zbl

[6] Helffer B., “Invariants associés à une classe d'operateurs pseudodifferentiels et applications à l'hypoellipticite”, Ann. Inst. Fourier, 26:2 (1976), 55–70 | MR | Zbl

[7] Boutet de Monvel L., Grigis A., Helffer B., “Parametrixes d'operateurs pseudodifferentiela à caracteristiques multiples”, Asterisque, 34–35, 1976, 93–121 | Zbl

[8] Metivier G., “Comportement asymptotique des valeurs propres d'operateurs elliptiques dégénérés”, Asterisque, 34–35, 1976, 149–215 | MR

[9] Vishik M. I., Grushin V. V., “Kraevye zadachi dlya ellipticheskikh uravnenii, vyrozhdayuschikhsya na granitse oblasti”, Matem. sb., 80:4 (1969), 455–491 | Zbl

[10] Hormander L., “The Weyl calculus of pseudodifferential operators”, Comm. Pure Appl. Math., 32 (1979), 359–443 | DOI | MR

[11] Boutet de Monvel L., “Hypoelliptic operators with double characteristics and related pseudodifferential operators”, Comm. Pure Appl. Math., 27 (1974), 585–639 | MR | Zbl

[12] Segal I., “Transforms for operators and symplectic automorphisms over a locally compact abelian group”, Math. Scand., 13 (1963), 31–43 | MR | Zbl

[13] Feigin V. I., “Asimptoticheskoe raspredelenie sobstvennykh znachenii dlya gipoellipticheskikh sistem v $R^n$”, Matem. sb., 99:4 (1976), 594–614 | MR | Zbl