On~the number of zeros of the function $\zeta(s)$ on ``almost all'' short intervals of the critical line
Izvestiya. Mathematics , Tome 32 (1989) no. 3, pp. 475-499.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $\varepsilon>0$ is an arbitrarily small fixed number, $$ Y\geqslant Y_0(\varepsilon)>0,\quad H=Y^\varepsilon,\quad Y_1=Y^{\frac{11}{12}+\varepsilon},\quad Y\leqslant T\leqslant Y+Y_1. $$ Consider the relation $$ N_0(T+H)-N_0(T)\geqslant cH\ln T, $$ where $c=c(\varepsilon)>0$ is a constant depending only on $\varepsilon$, and let $E$ denote the set of those $T$ in the interval $Y\leqslant T\leqslant Y+Y_1$ for which this relation does not hold. It is shown that the measure of this set satisfies $\mu(E)\leqslant Y_1Y^{-0.5\,\varepsilon}$. Bibliography: 19 titles.
@article{IM2_1989_32_3_a1,
     author = {L. V. Kiseleva},
     title = {On~the number of zeros of the function $\zeta(s)$ on ``almost all'' short intervals of the critical line},
     journal = {Izvestiya. Mathematics },
     pages = {475--499},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a1/}
}
TY  - JOUR
AU  - L. V. Kiseleva
TI  - On~the number of zeros of the function $\zeta(s)$ on ``almost all'' short intervals of the critical line
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 475
EP  - 499
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a1/
LA  - en
ID  - IM2_1989_32_3_a1
ER  - 
%0 Journal Article
%A L. V. Kiseleva
%T On~the number of zeros of the function $\zeta(s)$ on ``almost all'' short intervals of the critical line
%J Izvestiya. Mathematics 
%D 1989
%P 475-499
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a1/
%G en
%F IM2_1989_32_3_a1
L. V. Kiseleva. On~the number of zeros of the function $\zeta(s)$ on ``almost all'' short intervals of the critical line. Izvestiya. Mathematics , Tome 32 (1989) no. 3, pp. 475-499. http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a1/

[1] Hardy G. H., “Sur les zeros de la fonction $\zeta(s)$ de Riemann”, Compt. Rend. Acad. Sci., 158 (1914), 1012–1014 | Zbl

[2] Hardy G. H., Littlewood J. E., “Contributions to the theory of Riemann zeta-functionand the theory of distribution of primes”, Acta Math., 41 (1918), 119–196 | DOI | MR

[3] Hardy G. H., Littlewood J. E., “The zeros of Riemann's zeta-function on the critical line”, Math. Zs., 10 (1921), 283–317 | DOI | MR | Zbl

[4] Selberg A., “On the zeros of Riemann's zeta-function”, Skr. Norske Vid. Acad. Oslo, 10 (1942), 59 | MR

[5] Levinson N., “More than one third of the zeros of Riemann's zeta-function are on $\sigma=1/2$”, Adv. in Math., 13 (1974), 383–436 | DOI | MR | Zbl

[6] Mozer Ya., “Ob odnoi teoreme Khardi–Littlvuda v teorii dzeta-funktsii Rimana”, Acta Arith., 31 (1976), 45–51 | MR

[7] Mozer Ya., “O kornyakh uravneniya $Z'(t)=0$”, Acta Arith., 40 (1981), 79–89 ; 97–107 | MR

[8] Mozer Ya., “Uluchshenie teoremy Khardi–Littlvuda o plotnosti nulei funktsii $\zeta(\frac12+it)$”, Acta Math. Univ. Comen. Bratislava, 1983, 42–43, 41–50 | MR

[9] Karatsuba A. A., “O rasstoyanii mezhdu sosednimi nulyami dzeta-funktsii Rimana, lezhaschimi na kriticheskoi pryamoi”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 157, 1981, 49–63 | MR | Zbl

[10] Karatsuba A. A., “O nulyakh dzeta-funktsii Rimana na korotkikh promezhutkakh kriticheskoi pryamoi”, Dokl. AN SSSR, 272:6 (1983), 1312–1314 | MR | Zbl

[11] Karatsuba A. A., “O nulyakh funktsii $\zeta(s)$ na korotkikh promezhutkakh kriticheskoi pryamoi”, Izv. AN SSSR. Ser. matem., 48:3 (1984), 569–584 | MR | Zbl

[12] Karatsuba A. A., “Raspredelenie nulei funktsii $\zeta(\frac12+it)$”, Izv. AN SSSR. Ser. matem., 48:6 (1984), 1214–1224 | MR | Zbl

[13] Karatsuba A. A., “Dzeta-funktsiya Rimana i ee nuli”, UMN, 40:5 (1985), 19–70 | MR | Zbl

[14] Kiseleva L. V., “O kolichestve nulei dzeta-funktsii Rimana na korotkikh promezhutkakh kriticheskoi pryamoi”, Dokl. AN SSSR, 293:3 (1987), 532–534 | MR | Zbl

[15] Arkhipov G. I., Karatsuba A. A., Chubarikov V. N., Kratnye trigonometricheskie summy, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 151, 1980 | MR | Zbl

[16] Malyshev A. V., O predstavlenii tselykh chisel polozhitelnymi kvadratichnymi formami, Tr. matem. in-ta im. V. A. Steklova AN SSSR, 65, 1962 | MR | Zbl

[17] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, 2-e izd., pererab. i dop., Nauka, M., 1983 | MR

[18] Titchmarsh E. K., Teoriya dzeta-funktsii Rimana, IL, M., 1953

[19] Vinogradov I. M., Osobye varianty metoda trigonometricheskikh summ, Nauka, M. | MR