On~the number of zeros of the function $\zeta(s)$ on ``almost all'' short intervals of the critical line
Izvestiya. Mathematics , Tome 32 (1989) no. 3, pp. 475-499

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $\varepsilon>0$ is an arbitrarily small fixed number, $$ Y\geqslant Y_0(\varepsilon)>0,\quad H=Y^\varepsilon,\quad Y_1=Y^{\frac{11}{12}+\varepsilon},\quad Y\leqslant T\leqslant Y+Y_1. $$ Consider the relation $$ N_0(T+H)-N_0(T)\geqslant cH\ln T, $$ where $c=c(\varepsilon)>0$ is a constant depending only on $\varepsilon$, and let $E$ denote the set of those $T$ in the interval $Y\leqslant T\leqslant Y+Y_1$ for which this relation does not hold. It is shown that the measure of this set satisfies $\mu(E)\leqslant Y_1Y^{-0.5\,\varepsilon}$. Bibliography: 19 titles.
@article{IM2_1989_32_3_a1,
     author = {L. V. Kiseleva},
     title = {On~the number of zeros of the function $\zeta(s)$ on ``almost all'' short intervals of the critical line},
     journal = {Izvestiya. Mathematics },
     pages = {475--499},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a1/}
}
TY  - JOUR
AU  - L. V. Kiseleva
TI  - On~the number of zeros of the function $\zeta(s)$ on ``almost all'' short intervals of the critical line
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 475
EP  - 499
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a1/
LA  - en
ID  - IM2_1989_32_3_a1
ER  - 
%0 Journal Article
%A L. V. Kiseleva
%T On~the number of zeros of the function $\zeta(s)$ on ``almost all'' short intervals of the critical line
%J Izvestiya. Mathematics 
%D 1989
%P 475-499
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a1/
%G en
%F IM2_1989_32_3_a1
L. V. Kiseleva. On~the number of zeros of the function $\zeta(s)$ on ``almost all'' short intervals of the critical line. Izvestiya. Mathematics , Tome 32 (1989) no. 3, pp. 475-499. http://geodesic.mathdoc.fr/item/IM2_1989_32_3_a1/