Minimal surfaces in homogeneous spaces
Izvestiya. Mathematics , Tome 32 (1989) no. 2, pp. 413-427

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method of proving the global minimality of closed submanifolds in Riemannian spaces, a development of the calibration method of Harvey and Lawson, is worked out. A criterion for global minimality of currents in compact homogeneous spaces is proved, and it is used to construct series of specific examples and prove a theorem about certain types of globally minimal surfaces in homogeneous spaces. Bibliography: 10 titles.
@article{IM2_1989_32_2_a7,
     author = {L\^e H\^ong V\^an},
     title = {Minimal surfaces in homogeneous spaces},
     journal = {Izvestiya. Mathematics },
     pages = {413--427},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a7/}
}
TY  - JOUR
AU  - Lê Hông Vân
TI  - Minimal surfaces in homogeneous spaces
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 413
EP  - 427
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a7/
LA  - en
ID  - IM2_1989_32_2_a7
ER  - 
%0 Journal Article
%A Lê Hông Vân
%T Minimal surfaces in homogeneous spaces
%J Izvestiya. Mathematics 
%D 1989
%P 413-427
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a7/
%G en
%F IM2_1989_32_2_a7
Lê Hông Vân. Minimal surfaces in homogeneous spaces. Izvestiya. Mathematics , Tome 32 (1989) no. 2, pp. 413-427. http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a7/