The Lax representation with a~spectral parameter for certain dynamical systems
Izvestiya. Mathematics , Tome 32 (1989) no. 2, pp. 245-268

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that all dynamical systems forming a countable set of integrable discretizations of the KdV equation admit a Lax representation with a spectral parameter. Continuous limits of Fermi–Pasta–Ulam lattices are investigated, and a connection is established between them and the linear Tricomi equation. Bibliography: 11 titles.
@article{IM2_1989_32_2_a0,
     author = {O. I. Bogoyavlenskii},
     title = {The {Lax} representation with a~spectral parameter for certain dynamical systems},
     journal = {Izvestiya. Mathematics },
     pages = {245--268},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a0/}
}
TY  - JOUR
AU  - O. I. Bogoyavlenskii
TI  - The Lax representation with a~spectral parameter for certain dynamical systems
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 245
EP  - 268
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a0/
LA  - en
ID  - IM2_1989_32_2_a0
ER  - 
%0 Journal Article
%A O. I. Bogoyavlenskii
%T The Lax representation with a~spectral parameter for certain dynamical systems
%J Izvestiya. Mathematics 
%D 1989
%P 245-268
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a0/
%G en
%F IM2_1989_32_2_a0
O. I. Bogoyavlenskii. The Lax representation with a~spectral parameter for certain dynamical systems. Izvestiya. Mathematics , Tome 32 (1989) no. 2, pp. 245-268. http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a0/