The Lax representation with a~spectral parameter for certain dynamical systems
Izvestiya. Mathematics , Tome 32 (1989) no. 2, pp. 245-268.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that all dynamical systems forming a countable set of integrable discretizations of the KdV equation admit a Lax representation with a spectral parameter. Continuous limits of Fermi–Pasta–Ulam lattices are investigated, and a connection is established between them and the linear Tricomi equation. Bibliography: 11 titles.
@article{IM2_1989_32_2_a0,
     author = {O. I. Bogoyavlenskii},
     title = {The {Lax} representation with a~spectral parameter for certain dynamical systems},
     journal = {Izvestiya. Mathematics },
     pages = {245--268},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a0/}
}
TY  - JOUR
AU  - O. I. Bogoyavlenskii
TI  - The Lax representation with a~spectral parameter for certain dynamical systems
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 245
EP  - 268
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a0/
LA  - en
ID  - IM2_1989_32_2_a0
ER  - 
%0 Journal Article
%A O. I. Bogoyavlenskii
%T The Lax representation with a~spectral parameter for certain dynamical systems
%J Izvestiya. Mathematics 
%D 1989
%P 245-268
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a0/
%G en
%F IM2_1989_32_2_a0
O. I. Bogoyavlenskii. The Lax representation with a~spectral parameter for certain dynamical systems. Izvestiya. Mathematics , Tome 32 (1989) no. 2, pp. 245-268. http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a0/

[1] Bogoyavlenskii O. I., “Nekotorye konstruktsii integriruemykh dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 51:4 (1987), 737–766 | MR | Zbl

[2] Bogoyavlenskii O. I., “Integriruemye dinamicheskie sistemy, svyazannye s uravneniem KdV”, Izv. AN SSSR. Ser. matem., 51:6 (1987), 1123–1141 | MR | Zbl

[3] Bogoyavlensky O. I., “On perturbations of the periodic Toda lattice”, Comm. Math. Phys., 51 (1976), 201–209 | DOI | MR

[4] Toda M., Theory of nonlinear lattices, Springer-Verlag, Berlin, 1981 | MR | Zbl

[5] S. P. Novikov (red.), Teoriya solitonov, Nauka, M., 1980 | MR

[6] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[7] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1978 | MR

[8] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl

[9] Riman B., Sochineniya, Gostekhizdat, M., L., 1948

[10] Novikov S. P., “Geometriya konservativnykh sistem gidrodinamicheskogo tipa. Metod usredneniya dlya teoretiko-polevykh sistem”, UMN, 40:4 (1985), 79–90 | MR

[11] Fermi E., Nauchnye trudy, t. 2, Nauka, M., 1972, 645–656