Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1989_32_2_a0, author = {O. I. Bogoyavlenskii}, title = {The {Lax} representation with a~spectral parameter for certain dynamical systems}, journal = {Izvestiya. Mathematics }, pages = {245--268}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {1989}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a0/} }
O. I. Bogoyavlenskii. The Lax representation with a~spectral parameter for certain dynamical systems. Izvestiya. Mathematics , Tome 32 (1989) no. 2, pp. 245-268. http://geodesic.mathdoc.fr/item/IM2_1989_32_2_a0/
[1] Bogoyavlenskii O. I., “Nekotorye konstruktsii integriruemykh dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 51:4 (1987), 737–766 | MR | Zbl
[2] Bogoyavlenskii O. I., “Integriruemye dinamicheskie sistemy, svyazannye s uravneniem KdV”, Izv. AN SSSR. Ser. matem., 51:6 (1987), 1123–1141 | MR | Zbl
[3] Bogoyavlensky O. I., “On perturbations of the periodic Toda lattice”, Comm. Math. Phys., 51 (1976), 201–209 | DOI | MR
[4] Toda M., Theory of nonlinear lattices, Springer-Verlag, Berlin, 1981 | MR | Zbl
[5] S. P. Novikov (red.), Teoriya solitonov, Nauka, M., 1980 | MR
[6] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl
[7] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1978 | MR
[8] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl
[9] Riman B., Sochineniya, Gostekhizdat, M., L., 1948
[10] Novikov S. P., “Geometriya konservativnykh sistem gidrodinamicheskogo tipa. Metod usredneniya dlya teoretiko-polevykh sistem”, UMN, 40:4 (1985), 79–90 | MR
[11] Fermi E., Nauchnye trudy, t. 2, Nauka, M., 1972, 645–656