Estimates of the derivatives, with respect to the initial data, of the expectation of a~solution of a~stochastic equation on a~manifold
Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 167-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author obtains estimates of the first two derivatives, with respect to the initial data, of the solution of a stochastic differential equation given on a smooth Riemannian manifold $M$. The case where $M$ is a nonsingular surface in a Riemannian space is studied separately. Bibliography: 11 titles.
@article{IM2_1989_32_1_a8,
     author = {G. V. Nosovskii},
     title = {Estimates of the derivatives, with respect to the initial data, of the expectation of a~solution of a~stochastic equation on a~manifold},
     journal = {Izvestiya. Mathematics },
     pages = {167--189},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a8/}
}
TY  - JOUR
AU  - G. V. Nosovskii
TI  - Estimates of the derivatives, with respect to the initial data, of the expectation of a~solution of a~stochastic equation on a~manifold
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 167
EP  - 189
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a8/
LA  - en
ID  - IM2_1989_32_1_a8
ER  - 
%0 Journal Article
%A G. V. Nosovskii
%T Estimates of the derivatives, with respect to the initial data, of the expectation of a~solution of a~stochastic equation on a~manifold
%J Izvestiya. Mathematics 
%D 1989
%P 167-189
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a8/
%G en
%F IM2_1989_32_1_a8
G. V. Nosovskii. Estimates of the derivatives, with respect to the initial data, of the expectation of a~solution of a~stochastic equation on a~manifold. Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 167-189. http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a8/

[1] Ito K., “Stochastic differential equations in a differentiable manifold”, Nagoya Math. J., 1 (1950), 35–47 | MR | Zbl

[2] Krylov N. V., Upravlyaemye protsessy diffuzionnogo tipa, Nauka, M., 1977, 400 pp. | MR

[3] Dubrovin B. L., Novikov S. D., Fomenko L. T., Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1979, 760 pp. | MR

[4] Ikeda N., Watanabe S., Stochastic differential equations and diffusion processes, Amsterdam, Tokyo, 1981, 464 pp. | MR

[5] Meyer P. A., “Geometrie stochastique sans larmes”, Seminarie de Prob., Lect. Notes Math., XV, 1981, 44–102 | MR | Zbl

[6] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov, Nauka, M., 1974, 696 pp. | MR | Zbl

[7] Krylov N. V., Nelineinye ellipticheskie i parabolicheskie uravneniya vtorogo poryadka, Nauka, M., 1985, 376 pp. | MR

[8] Blagoveschenskii Yu. N., Freidlin M. I., “Nekotorye svoistva diffuzionnykh protsessov, zavisyaschikh ot parametra”, Dokl. AN SSSR, 138 (1961), 508–511 | MR | Zbl

[9] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, t. 2, Nauka, M., 1981, 416 pp.

[10] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979, 280 pp. | MR | Zbl

[11] Belopolskaya Ya. I., Daletskii Yu. L., “Uravneniya Ito i differentsialnaya geometriya”, UMN, 37:3 (1982), 95–142 | MR