Quasiclassical asymptotics of the scattering cross-section for the Schr\"odinger equation
Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 141-165

Voir la notice de l'article provenant de la source Math-Net.Ru

The author considers scattering with a potential $gq(x)$, $x\in\mathbf R^m$, that decreases as $|x|\to\infty$ as a homogeneous function of degree $-\alpha$. In the domain $gk^{-1}\to\infty$, $gk^{\alpha-2}\to\infty$ the asymptotics of the forward scattering amplitude is found, as well as the total scattering cross-section averaged over a small interval of $k$. This is determined only by the behavior of $q(x)$ as $|x|\to\infty$. Dual results are obtained for strongly singular potentials. Bibliography: 16 titles.
@article{IM2_1989_32_1_a7,
     author = {D. R. Yafaev},
     title = {Quasiclassical asymptotics of the scattering cross-section for the {Schr\"odinger} equation},
     journal = {Izvestiya. Mathematics },
     pages = {141--165},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a7/}
}
TY  - JOUR
AU  - D. R. Yafaev
TI  - Quasiclassical asymptotics of the scattering cross-section for the Schr\"odinger equation
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 141
EP  - 165
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a7/
LA  - en
ID  - IM2_1989_32_1_a7
ER  - 
%0 Journal Article
%A D. R. Yafaev
%T Quasiclassical asymptotics of the scattering cross-section for the Schr\"odinger equation
%J Izvestiya. Mathematics 
%D 1989
%P 141-165
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a7/
%G en
%F IM2_1989_32_1_a7
D. R. Yafaev. Quasiclassical asymptotics of the scattering cross-section for the Schr\"odinger equation. Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 141-165. http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a7/