Quasiclassical asymptotics of the scattering cross-section for the Schr\"odinger equation
Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 141-165
Voir la notice de l'article provenant de la source Math-Net.Ru
The author considers scattering with a potential $gq(x)$, $x\in\mathbf R^m$, that decreases as $|x|\to\infty$ as a homogeneous function of degree $-\alpha$. In the domain $gk^{-1}\to\infty$, $gk^{\alpha-2}\to\infty$ the asymptotics of the forward scattering amplitude is found, as well as the total scattering cross-section averaged over a small interval of $k$. This is determined only by the behavior of $q(x)$ as $|x|\to\infty$. Dual results are obtained for strongly singular potentials.
Bibliography: 16 titles.
@article{IM2_1989_32_1_a7,
author = {D. R. Yafaev},
title = {Quasiclassical asymptotics of the scattering cross-section for the {Schr\"odinger} equation},
journal = {Izvestiya. Mathematics },
pages = {141--165},
publisher = {mathdoc},
volume = {32},
number = {1},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a7/}
}
D. R. Yafaev. Quasiclassical asymptotics of the scattering cross-section for the Schr\"odinger equation. Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 141-165. http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a7/