Expansion in eigenfunctions of a~nonselfadjoint operator with purely continuous spectrum
Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 113-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

The differential operator $$ H=-\Delta_{\boldsymbol x}+i\varkappa\Delta_{\boldsymbol y}+q(\boldsymbol x-\boldsymbol y), $$ arising in the three-dimensional problem of scattering by a Brownian particle is studied. Its analysis reduces to the investigation of a family of operators in $L_2(\mathbf R^3)$: $$ B_{\boldsymbol p}=-\Delta_{\boldsymbol v}+2(\boldsymbol p,\Delta_{\boldsymbol v})+\frac{q(\boldsymbol v)}{1-i\varkappa}, \quad \boldsymbol p\in \mathbf R^3. $$ Under the condition that the potential $q$ is bounded and small, an expansion in the eigenfunctions of the continuous spectrum of $B_\boldsymbol p$ is obtained. From this expansion an explicit formula is found for the semigroup $\exp(itH)$ on a set dense in $L_2(\mathbf R^6)$. Bibliography: 5 titles.
@article{IM2_1989_32_1_a6,
     author = {S. E. Cheremshantsev},
     title = {Expansion in eigenfunctions of a~nonselfadjoint operator with purely continuous spectrum},
     journal = {Izvestiya. Mathematics },
     pages = {113--139},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a6/}
}
TY  - JOUR
AU  - S. E. Cheremshantsev
TI  - Expansion in eigenfunctions of a~nonselfadjoint operator with purely continuous spectrum
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 113
EP  - 139
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a6/
LA  - en
ID  - IM2_1989_32_1_a6
ER  - 
%0 Journal Article
%A S. E. Cheremshantsev
%T Expansion in eigenfunctions of a~nonselfadjoint operator with purely continuous spectrum
%J Izvestiya. Mathematics 
%D 1989
%P 113-139
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a6/
%G en
%F IM2_1989_32_1_a6
S. E. Cheremshantsev. Expansion in eigenfunctions of a~nonselfadjoint operator with purely continuous spectrum. Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 113-139. http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a6/

[1] Cheremshantsev S. E., “Ob ustranenii resheniya uravneniya Shredingera s potentsialom, zavisyaschim ot vremeni sluchainym obrazom”, Dokl. AN SSSR, 266:3 (1982), 597–601 | MR | Zbl

[2] Cheremshantsev S. E., “Kvantovoe rasseyanie na brounovskoi chastitse s kompleksnym potentsialom”, Teor. i matem. fiz., 56:1 (1983), 125–130 | MR

[3] Cheremshantsev S. E., “Spektralnyi analiz nesamosopryazhennogo differentsialnogo operatora, voznikayuschego v odnomernoi zadache rasseyaniya na brounovskoi chastitse”, Matem. sb., 129(171):3 (1986), 358–377 | MR

[4] Faddeev L. D., “Rastuschie resheniya uravneniya Shredingera”, Dokl. AN SSSR, 165:3 (1965), 514–517 | Zbl

[5] Newton R. G., The Three-dimensional Inverse Scattering Problem in Quantum Mechanics, Indiana University, Bloomington, 1974