On~best and optimal quadrature formulas on~classes of bounded analytic functions
Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 77-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

The best quadrature formula is constructed for the Chebyshev weight function and Chebyshev knots, for the class of functions that are analytic in an ellipse with foci at the points $pm1$ and sum of semiaxes $c$, and have their moduli bounded by unity there. Bibliography: 15 titles.
@article{IM2_1989_32_1_a4,
     author = {K. Yu. Osipenko},
     title = {On~best and optimal quadrature formulas on~classes of bounded analytic functions},
     journal = {Izvestiya. Mathematics },
     pages = {77--97},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a4/}
}
TY  - JOUR
AU  - K. Yu. Osipenko
TI  - On~best and optimal quadrature formulas on~classes of bounded analytic functions
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 77
EP  - 97
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a4/
LA  - en
ID  - IM2_1989_32_1_a4
ER  - 
%0 Journal Article
%A K. Yu. Osipenko
%T On~best and optimal quadrature formulas on~classes of bounded analytic functions
%J Izvestiya. Mathematics 
%D 1989
%P 77-97
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a4/
%G en
%F IM2_1989_32_1_a4
K. Yu. Osipenko. On~best and optimal quadrature formulas on~classes of bounded analytic functions. Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 77-97. http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a4/

[1] Osipenko K. Yu., “Nailuchshee priblizhenie analiticheskikh funktsii po informatsii ob ikh znacheniyakh v konechnom chisle tochek”, Matem. zametki, 19:1 (1976), 29–40 | MR | Zbl

[2] Bakhvalov N. S., “Ob optimalnoi skorosti integrirovaniya analiticheskikh funktsii”, Zhurn. vychisl. matem. i matem. fiz., 7:5 (1967), 1011–1020 | Zbl

[3] Loeb H. L., “A note on optimal integration in $H_\infty$”, C.R. Acad. Bulgare Sci., 27:5 (1974), 615–619 | MR

[4] Bojanov B. D., “On the existence of optimal quadrature formulae for smooth functions”, Calcolo, 16:1 (1979), 61–70 | DOI | MR | Zbl

[5] Andersson J.-E., Bojanov B. D., “A note on the optimal quadrature in $H_p$”, Numer. Math., 44:2 (1984), 301–308 | DOI | MR | Zbl

[6] Osipenko K. Yu., “Nailuchshie metody priblizheniya analiticheskikh funktsii, zadannykh s pogreshnostyu”, Matem. sb., 118(160) (1982), 350–370 | MR | Zbl

[7] Micchelli C. A., Rivlin T. J., “A survey of optimal recovery”, Optimal estimation in approximation theory, Plenum Press, N.Y., 1977, 1–54 | MR

[8] Rivlin T. J., “The optimal recovery of functions”, Contemp. Math., 9 (1982), 121–151 | MR | Zbl

[9] Osipenko K. Yu., “Optimalnaya interpolyatsiya analiticheskikh funktsii”, Matem. zametki, 12:4 (1972), 465–476 | MR | Zbl

[10] Bojanov B. D., “Best quadrature formula for a certain class of analytic functions”, Zastos. Math., 14 (1974), 441–447 | MR | Zbl

[11] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl

[12] Zhuravskii A. I., Spravochnik po ellipticheskim funktsiyam, AN SSSR, M., 1941

[13] Fisher S. D., Micchelli C. A., “The $n$-widths of sets of analytic functions”, Duke Math. J., 47:4 (1980), 789–801 | DOI | MR | Zbl

[14] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[15] Bojanov B. D., “Extremal problems in a set of polynomials with fixed multiplicities of zeros”, C.R. Acad. Bulgare Sci., 31:4 (1978), 377–380 | MR