On~best and optimal quadrature formulas on~classes of bounded analytic functions
Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 77-97

Voir la notice de l'article provenant de la source Math-Net.Ru

The best quadrature formula is constructed for the Chebyshev weight function and Chebyshev knots, for the class of functions that are analytic in an ellipse with foci at the points $pm1$ and sum of semiaxes $c$, and have their moduli bounded by unity there. Bibliography: 15 titles.
@article{IM2_1989_32_1_a4,
     author = {K. Yu. Osipenko},
     title = {On~best and optimal quadrature formulas on~classes of bounded analytic functions},
     journal = {Izvestiya. Mathematics },
     pages = {77--97},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a4/}
}
TY  - JOUR
AU  - K. Yu. Osipenko
TI  - On~best and optimal quadrature formulas on~classes of bounded analytic functions
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 77
EP  - 97
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a4/
LA  - en
ID  - IM2_1989_32_1_a4
ER  - 
%0 Journal Article
%A K. Yu. Osipenko
%T On~best and optimal quadrature formulas on~classes of bounded analytic functions
%J Izvestiya. Mathematics 
%D 1989
%P 77-97
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a4/
%G en
%F IM2_1989_32_1_a4
K. Yu. Osipenko. On~best and optimal quadrature formulas on~classes of bounded analytic functions. Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 77-97. http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a4/