Holomorphic automorphisms of hyperbolic Reinhardt domains
Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 15-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author describes the group of holomorphic automorphisms of a Reinhardt domain in $\mathbf C^n$ that is a hyperbolic complex manifold. Explicit formulas are presented from which it can be seen, in particular, that hyperbolic Reinhardt domains that do not intersect the coordinate hyperplanes only have automorphisms of a very simple form. Bibliography: 12 titles.
@article{IM2_1989_32_1_a1,
     author = {N. G. Kruzhilin},
     title = {Holomorphic automorphisms of hyperbolic {Reinhardt} domains},
     journal = {Izvestiya. Mathematics },
     pages = {15--38},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a1/}
}
TY  - JOUR
AU  - N. G. Kruzhilin
TI  - Holomorphic automorphisms of hyperbolic Reinhardt domains
JO  - Izvestiya. Mathematics 
PY  - 1989
SP  - 15
EP  - 38
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a1/
LA  - en
ID  - IM2_1989_32_1_a1
ER  - 
%0 Journal Article
%A N. G. Kruzhilin
%T Holomorphic automorphisms of hyperbolic Reinhardt domains
%J Izvestiya. Mathematics 
%D 1989
%P 15-38
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a1/
%G en
%F IM2_1989_32_1_a1
N. G. Kruzhilin. Holomorphic automorphisms of hyperbolic Reinhardt domains. Izvestiya. Mathematics , Tome 32 (1989) no. 1, pp. 15-38. http://geodesic.mathdoc.fr/item/IM2_1989_32_1_a1/

[1] Reinhardt K., “Über Abbildungen durch analytische Funktionen zweier Veränderlichen”, Math. Ann., 83 (1921), 211 | DOI | MR | Zbl

[2] Thullen P., “Zu den Abbildungen durch analytische Funktionen mehrere Veränderlichen”, Math. Ann., 104 (1931), 244–255 | DOI | MR

[3] Naruki J., “The holomorphic equivalence problem for a class of Reinhardt domains”, Publ. RJMS Kyoto Univ., 4 (1968), 527–543 | DOI | MR | Zbl

[4] Sunada T., “Holomorphic equivalence problem for bounded Reinhardt domains”, Math. Ann., 235:2 (1978), 111–128 | DOI | MR | Zbl

[5] Bedford E., “Holomorphic mappings of products of annuli in $\mathbf{C}^n$”, Pacific J. Math., 87:2 (1980), 271–282 | MR

[6] Kobayashi S., “Intrinsic distances, measures and geometric function theory”, Bull. Amer. Math. Soc., 82:3 (1976), 357–416 | DOI | MR | Zbl

[7] Bochner S., “Compact groups of differentiable transformations”, Ann. Math., 469:3 (1945), 372–389 | DOI | MR

[8] Cartan E., “Sur la géometrie pseudoconforme des hypersurfaces de deux variables complexes”, Oeuvres II, 2, 1231–1304

[9] Burns D., Shnider S., “Spherical hypersurfaces in complex manifolds”, Invent. Math., 33:3 (1976), 223–246 | DOI | MR | Zbl

[10] Vitushkin L. G., Ezhov V. V., Kruzhilin N. G., “Prodolzhenie lokalnykh otobrazhenii psevdovypuklykh poverkhnostei”, Dokl. AN SSSR, 270:2 (1983), 271–274 | MR | Zbl

[11] Poincare A., “Les fonctions analytiques de deux variables et la représentation conforme”, Rend. Circ. Math. Palermo, 23 (1907), 185–220 | DOI | Zbl

[12] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta Math., 133:3,4 (1974), 219–271 | DOI | MR