Mapping of sets of finite $\alpha$-measure by rational functions
Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 621-633

Voir la notice de l'article provenant de la source Math-Net.Ru

Inequalities are obtained which reflect the changes in the Hausdorff $\alpha$-measures, including lengths and areas, of planar sets when they are mapped by rational functions of a complex variable. Some applications of these inequalities to the theory of rational approximation are given. Bibliography: 13 titles.
@article{IM2_1988_31_3_a8,
     author = {E. P. Dolzhenko and V. I. Danchenko},
     title = {Mapping of sets of finite $\alpha$-measure by rational functions},
     journal = {Izvestiya. Mathematics },
     pages = {621--633},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a8/}
}
TY  - JOUR
AU  - E. P. Dolzhenko
AU  - V. I. Danchenko
TI  - Mapping of sets of finite $\alpha$-measure by rational functions
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 621
EP  - 633
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a8/
LA  - en
ID  - IM2_1988_31_3_a8
ER  - 
%0 Journal Article
%A E. P. Dolzhenko
%A V. I. Danchenko
%T Mapping of sets of finite $\alpha$-measure by rational functions
%J Izvestiya. Mathematics 
%D 1988
%P 621-633
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a8/
%G en
%F IM2_1988_31_3_a8
E. P. Dolzhenko; V. I. Danchenko. Mapping of sets of finite $\alpha$-measure by rational functions. Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 621-633. http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a8/