Mapping of sets of finite $\alpha$-measure by rational functions
Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 621-633.

Voir la notice de l'article provenant de la source Math-Net.Ru

Inequalities are obtained which reflect the changes in the Hausdorff $\alpha$-measures, including lengths and areas, of planar sets when they are mapped by rational functions of a complex variable. Some applications of these inequalities to the theory of rational approximation are given. Bibliography: 13 titles.
@article{IM2_1988_31_3_a8,
     author = {E. P. Dolzhenko and V. I. Danchenko},
     title = {Mapping of sets of finite $\alpha$-measure by rational functions},
     journal = {Izvestiya. Mathematics },
     pages = {621--633},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a8/}
}
TY  - JOUR
AU  - E. P. Dolzhenko
AU  - V. I. Danchenko
TI  - Mapping of sets of finite $\alpha$-measure by rational functions
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 621
EP  - 633
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a8/
LA  - en
ID  - IM2_1988_31_3_a8
ER  - 
%0 Journal Article
%A E. P. Dolzhenko
%A V. I. Danchenko
%T Mapping of sets of finite $\alpha$-measure by rational functions
%J Izvestiya. Mathematics 
%D 1988
%P 621-633
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a8/
%G en
%F IM2_1988_31_3_a8
E. P. Dolzhenko; V. I. Danchenko. Mapping of sets of finite $\alpha$-measure by rational functions. Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 621-633. http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a8/

[1] Dolzhenko E. P., “O differentsirovanii kompleksnykh funktsii”, Dokl. AN SSSR, 130:1 (1960), 17–20 | Zbl

[2] Dolzhenko E. P., “Skorost priblizheniya ratsionalnymi drobyami i svoistva funktsii”, Matem. sb., 56:4 (1962), 403–432 | Zbl

[3] Dolzhenko E. P., “Ratsionalnye approksimatsii i granichnye svoistva analiticheskikh funktsii”, Matem. sb., 69(111) (1966), 497–524 | Zbl

[4] Dolzhenko E. P., “O zavisimosti granichnykh svoistv analiticheskoi funktsii ot skorosti ee priblizheniya ratsionalnymi funktsiyami”, Matem. sb., 103(145) (1977), 131–142 | Zbl

[5] Dolzhenko E. P., “Nekotorye tochnye integralnye otsenki proizvodnykh ratsionalnykh funktsii i algebraicheskikh funktsii. Prilozheniya”, Anal. Math., 4:4 (1978), 247–268 | DOI | MR

[6] Danchenko V. I., Otsenki variatsii ratsionalnykh funktsii na spryamlyaemykh krivykh, Dep. v VINITI 08.08.80, No 3515-80 Dep., Vladim. politekhn. in-t, Vladimir, 1980, 21

[7] Pekarskii A. A., “Otsenki proizvodnoi integrala tipa Koshi s meromorfnoi plotnostyu i ikh prilozheniya”, Matem. zametki, 31:3 (1982), 389–402 | MR | Zbl

[8] Andrievskii V. V., “Ob integralnykh otsenkakh proizvodnykh ratsionalnykh funktsii”, Anal. Math., 9:1 (1983), 3–7 | DOI | MR | Zbl

[9] Danchenko V. I., “O razdelenii osobennostei meromorfnykh funktsii”, Matem. sb., 125(167) (1984), 181–198 | MR

[10] Danchenko V. I., “Ob otsenkakh norm i variatsii ratsionalnykh sostavlyayuschikh meromorfnykh funktsii”, Dokl. AN SSSR, 280:5 (1985), 1043–1046 | MR | Zbl

[11] David G., “Operateurs integraux singuliers sur certaines courbes do plan complexe”, Ann. scient. Ec. Norm. Sup. 4 serie, 17 (1984), 157–189 | MR | Zbl

[12] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[13] Danchenko V. I., Neravenstva dlya ratsionalnykh funktsii, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1984