On~the extension of infinitely differentiable functions
Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 603-620.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions on logarithmically convex sequences $\{M_n\}$ and $\{\widehat M_n\}$ are obtained under which, for every sequence $\{b_n\}$ with $|b_n|$, $n=0,1,2,\dots$, there exists an infinitely differentiable function $f(x)$ such that $f_{(0)}^{(n)}=b_n$ and $\|f^{(n)}\|_{L_p(R)}\leqslant C_2^n\widehat M_n(p)$, $1\leqslant p\leqslant\infty$. Bibliography: 17 titles.
@article{IM2_1988_31_3_a7,
     author = {G. S. Balashova},
     title = {On~the extension of infinitely differentiable functions},
     journal = {Izvestiya. Mathematics },
     pages = {603--620},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a7/}
}
TY  - JOUR
AU  - G. S. Balashova
TI  - On~the extension of infinitely differentiable functions
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 603
EP  - 620
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a7/
LA  - en
ID  - IM2_1988_31_3_a7
ER  - 
%0 Journal Article
%A G. S. Balashova
%T On~the extension of infinitely differentiable functions
%J Izvestiya. Mathematics 
%D 1988
%P 603-620
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a7/
%G en
%F IM2_1988_31_3_a7
G. S. Balashova. On~the extension of infinitely differentiable functions. Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 603-620. http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a7/

[1] Borel E., Ann. Ecole Norm. Sup. (3), 1895, 12 | Zbl

[2] Carleman T., Lesons sur les fonctions quasi-analytiques, Paris, 1926

[3] Mandelbroit S., Primykayuschie ryady. Regulyarizatsiya posledovatelnostei. Primeneniya, Gostekhizdat, M., 1955

[4] Bang T., On quasi-analytiske Funktioner, Thèse, Kyobenhavn, 1946

[5] Carleson L., “On universal moment problems”, Math. Scand., 9:2 (1961), 197–206 | MR | Zbl

[6] Erenpreis L., The punctual and local images of quasi-analytic and non-quasi-analytic classes, Mimeographed, Institute for Advanced Study, Princeton, N.J., 1961

[7] Mityagin B. S., “O beskonechno differentsiruemoi funktsii s zadannymi znacheniyami proizvodnykh v tochke”, Dokl. AN SSSR, 138:2 (1961), 289–292 | Zbl

[8] Wahde G., “Interpolation on non-quasi-analytic classes of infinitely differentiable functions”, Math. Scand., 20:1 (1967), 19–31 | MR | Zbl

[9] Zobin N. M., “Teoremy prodolzheniya i predstavleniya dlya prostranstv tipa Zhevreya”, Dokl. AN SSSR, 212:6 (1973), 1280–1283 | MR

[10] Dubinskii Yu. A., “Prostranstva Soboleva beskonechnogo poryadka i povedenie reshenii nekotorykh kraevykh zadach pri neogranichennom vozrastanii poryadka uravnenii”, Matem. sb., 98(140):2 (1975), 163–184 | MR | Zbl

[11] Dubinskii Yu. A., “Sledy funktsii iz prostranstv Soboleva beskonechnogo poryadka i neodnorodnye zadachi dlya nelineinykh uravnenii”, Matem. sb., 106(148):1 (1978), 66–84 | MR | Zbl

[12] Dubinskii Yu. A., “Predely banakhovykh prostranstv. Teoremy vlozheniya. Primeneniya k prostranstvam Soboleva beskonechnogo poryadka”, Matem. sb., 110(152):3 (1979), 428–439 | MR | Zbl

[13] Chan Dyk Van, “Sledy funktsii iz klassov Soboleva–Orlicha beskonechnogo poryadka i neodnorodnye kraevye zadachi dlya uravnenii s proizvolnymi nelineinostyami”, Dokl. AN SSSR, 254:6 (1980), 1357–1361 | MR | Zbl

[14] Balashova G. S., “Nekotorye teoremy prodolzheniya v prostranstve Soboleva beskonechnogo poryadka i neodnorodnye kraevye zadachi”, Dokl. AN SSSR, 244:6 (1979), 1294–1297 | MR | Zbl

[15] Balashova G. S., “O teoremakh prodolzheniya v prostranstvakh beskonechno differentsiruemykh funktsii”, Matem. sb., 118(160):3 (1982), 371–385 | MR

[16] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, t. 2, Nauka, M., 1969

[17] Balashova G. S., “O nekotorykh teoremakh vlozheniya prostranstv beskonechno differentsiruemykh funktsii”, Dokl. AN SSSR, 247:6 (1979), 1301–1304 | MR | Zbl