On~the extension of infinitely differentiable functions
Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 603-620

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions on logarithmically convex sequences $\{M_n\}$ and $\{\widehat M_n\}$ are obtained under which, for every sequence $\{b_n\}$ with $|b_n|$, $n=0,1,2,\dots$, there exists an infinitely differentiable function $f(x)$ such that $f_{(0)}^{(n)}=b_n$ and $\|f^{(n)}\|_{L_p(R)}\leqslant C_2^n\widehat M_n(p)$, $1\leqslant p\leqslant\infty$. Bibliography: 17 titles.
@article{IM2_1988_31_3_a7,
     author = {G. S. Balashova},
     title = {On~the extension of infinitely differentiable functions},
     journal = {Izvestiya. Mathematics },
     pages = {603--620},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a7/}
}
TY  - JOUR
AU  - G. S. Balashova
TI  - On~the extension of infinitely differentiable functions
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 603
EP  - 620
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a7/
LA  - en
ID  - IM2_1988_31_3_a7
ER  - 
%0 Journal Article
%A G. S. Balashova
%T On~the extension of infinitely differentiable functions
%J Izvestiya. Mathematics 
%D 1988
%P 603-620
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a7/
%G en
%F IM2_1988_31_3_a7
G. S. Balashova. On~the extension of infinitely differentiable functions. Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 603-620. http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a7/