On~the extension of infinitely differentiable functions
Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 603-620
Voir la notice de l'article provenant de la source Math-Net.Ru
Conditions on logarithmically convex sequences $\{M_n\}$ and $\{\widehat M_n\}$ are obtained under which, for every sequence $\{b_n\}$ with $|b_n|$, $n=0,1,2,\dots$, there exists an infinitely differentiable function $f(x)$ such that $f_{(0)}^{(n)}=b_n$ and $\|f^{(n)}\|_{L_p(R)}\leqslant C_2^n\widehat M_n(p)$, $1\leqslant p\leqslant\infty$.
Bibliography: 17 titles.
@article{IM2_1988_31_3_a7,
author = {G. S. Balashova},
title = {On~the extension of infinitely differentiable functions},
journal = {Izvestiya. Mathematics },
pages = {603--620},
publisher = {mathdoc},
volume = {31},
number = {3},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a7/}
}
G. S. Balashova. On~the extension of infinitely differentiable functions. Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 603-620. http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a7/