Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1988_31_3_a6, author = {A. Yu. Khrennikov}, title = {Infinite-dimensional pseudodifferential operators}, journal = {Izvestiya. Mathematics }, pages = {575--601}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {1988}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a6/} }
A. Yu. Khrennikov. Infinite-dimensional pseudodifferential operators. Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 575-601. http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a6/
[1] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR
[2] Blekher P. M., Vishik M. I., “Ob odnom klasse psevdodifferentsialnykh operatorov s beskonechnym chislom peremennykh i ikh prilozheniya”, Matem. sb., 86:3 (1971), 446–494 | Zbl
[3] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1965 | MR
[4] Berezin F. A., “Ob odnom predstavlenii operatorov s pomoschyu funktsionalov”, Tr. Mosk. matem. obschestva, 17, 1967, 117–196 | MR | Zbl
[5] Smolyanov O. G., “Beskonechnomernye psevdodifferentsialnye operatory i kvantovanie po Shredingeru”, Dokl. AN SSSR, 263:3 (1982), 558–562 | MR | Zbl
[6] Khrennikov A. Yu., “Vtorichnoe kvantovanie i psevdodifferentsialnye operatory”, Teor. i matem. fiz., 66:3 (1986), 339–349 | MR | Zbl
[7] Agarwal G., Wolf E., “Calculus for functions of noncommuting operators and general phase-space metods in quantum mechanics, I, II, III”, Phys. Rev. D2, 1970, no. 11, 2161–2265 | DOI | MR
[8] Berezin F. A., “Nevinerovskie kontinualnye integraly”, Teor. i matem. fiz., 6:2 (1971), 194–212 | MR | Zbl
[9] Khrennikov A. Yu., “Mera Feinmana v fazovom prostranstve i simvoly beskonechnomernykh psevdodifferentsialnykh operatorov”, Matem. zametki, 37:5 (1985), 734–742 | MR | Zbl
[10] Smolyanov O. G., Khrennikov A. Yu., “Algebra beskonechnomernykh psevdodifferentsialnykh operatorov”, Dokl. AN SSSR, 242:6 (1987), 1103–1106 | MR
[11] Witten E., “New issues in manifolds of SU(3) holonomy”, Nucl. Phys. B., 268:1 (1986), 79–112 | DOI | MR
[12] Witten E., “Interacting field theory of open superstrings”, Nucl. Phys. B., 276:2 (1986), 291–324 | DOI | MR
[13] Neveu A., West P. S., “Gauge covariant local formulation of Bosonic strings”, Nucl. Phys. B., 268:1 (1986), 125–150 | DOI | MR
[14] Michio Kaku, Kikkawa K., “Field theory of relativistic strings”, Phys. Rev. D., 10:4 (1974), 1110–11312 | DOI
[15] Cremmer E., Gervais J. L., “Infinite component field theory of interacting relativistic strings and dual theory”, Nucl. Phys. B., 90:3 (1975), 410–461 | DOI
[16] Virasoro M. A., “Subsidiary conditions and ghosts in dual-resonance models”, Phys. Rev. D., 1:10 (1970), 2933–2936 | DOI
[17] Vladimirov V. S., Volovich I. V., “Superanaliz I. Differentsialnoe ischislenie”, Teor. i matem. fizika, 59:1 (1984), 3–27 | MR | Zbl
[18] Vladimirov V. S., Volovich I. V., “Superanaliz II. Integralnoe ischislenie”, Teor. i matem. fizika, 60:2 (1984), 169–198 | MR | Zbl
[19] Volovich I. V., “Supersimmetrichnoe kiralnoe pole s anomaliei i ego integriruemost”, Teor. i matem. fiz., 63:2 (1985), 312–314 | MR
[20] Volovich I. V., “Supersimmetrichnaya teoriya Yanga–Millsa kak golomorfnoe rassloenie nad tvistorami i superavtodualnost”, Teor. i matem. fiz., 55:1 (1983), 39–43 | MR
[21] Volovich I. V., “Supersimmetrichnaya teoriya Yanga–Millsa i metod obratnoi zadachi rasseyaniya”, Teor. i matem. fiz., 57:3 (1983), 469–473 | MR
[22] Arefeva I. Ya., Volovich I. V., “Mnogoobraziya postoyannoi otritsatelnoi krivizny kak vakuumnye resheniya v teorii Kalutsy–Kleina i superstrunakh”, Teor. i matem. fiz., 64:2 (1985), 329–336 | MR
[23] Arefieva I. Ya., Volovich I. V., “Gaugeinvariant string interaction and nonassociative algebra”, Phys. Letters. B., 182:2 (1986), 159–163 | DOI
[24] Arefieva I. Ya., Volovich I. V., “String field algebra”, Phys. Letters. B., 182:3,4 (1986), 312–316 | DOI | MR
[25] Khrennikov A. Yu., “Superanaliz: teoriya obobschennykh funktsii i psevdodifferentsialnykh operatorov”, Teor. i matem. fiz., 73:3 (1987), 420–429 | MR
[26] Berezanskii Yu. M., Samosopryazhennye operatory v prostranstvakh funktsii beskonechnogo chisla peremennykh, Nauk. dumka, Kiev, 1978 | MR
[27] Glimm Dzh., Dzhaffe A., Bozonnye kvantovopolevye modeli. Konstruktivnaya teoriya polya, Mir, M., 1978
[28] Berezanskii Yu. M., Samoilenko V. G., “Samosopryazhennost differentsialnykh operatorov s konechnym i beskonechnym chislom peremennykh i evolyutsionnye uravneniya”, Uspekhi matem. nauk, 36:5 (1981), 3–56 | MR | Zbl
[29] Khrennikov A. Yu., “Uravneniya s beskonechnomernymi psevdodifferentsialnymi operatorami”, Dokl. AN SSSR, 267:6 (1982), 1113–1117 | MR
[30] Uglanov A. V., “Differentsialnye uravneniya s postoyannymi koeffitsientami dlya obobschennykh mer na gilbertovom prostranstve”, Izv. AN SSSR. Ser. matem., 39:2 (1975), 438–455 | MR
[31] Volovich I. V., “$\Lambda$-supermnogoobraziya i rassloeniya”, Dokl. AN SSSR, 269:3 (1983), 524–528 | MR
[32] Smolyanov O. G., Analiz na topologicheskikh lineinykh prostranstvakh i ego prilozheniya, MGU, M., 1979
[33] Keller H. T., “Differential calculus in locally convex spaces”, Lecture Notes in Math., 417, 1974, 1–340 | MR
[34] Connes A., Non commutative differential geometry. Chap. 1, IHES preprint, 1982
[35] Connes A., Non commutative differential geometry. Chap. 2, IHES preprint, 1983 | MR | Zbl
[36] Shefer X., Topologicheskie vektornye prostranstva, Mir, M., 1970
[37] Morette De Witte C., “Feynman's Path integral. Definition without limiting procedure”, Comm. Math. Phys., 28 (1972), 47–67 | DOI | MR | Zbl
[38] Albeverio S., Hoegh-Krohn R., “Mathematical theory of Feynman Path integral”, Lecture Notes in Math., 523, 1976, 1–152 | MR
[39] Slavnov A. A., Faddeev L. D., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR
[40] Uglanov A. V., “Feinmanovskie mery s znakoneopredelennym korrelyatsionnym operatorom”, Dokl. AN SSSR, 262:1 (1982), 37–40 | MR | Zbl
[41] Khrennikov A. U., “Some applications of Keller's convergence structure to the nonlinear functional analysis”, Abh. Acad. Wiss. DDR, 1984, no. 2, 113–118 | MR | Zbl
[42] Maslov V. P., Chebotarev A. M., “Skachkoobraznye protsessy i ikh primeneniya v kvantovoi mekhanike”, Teor. veroyat. i matem. stat., 15, VINITI, M., 1978, 5–78
[43] Smolyanov O. G., Khrennikov A. Yu., “Tsentralnaya predelnaya teorema dlya obobschennykh mer na beskonechnomernom prostranstve”, Dokl. AN SSSR, 281 (1985), 279–283 | MR | Zbl
[44] Saimon B., Model $P(\varphi)_2$ evklidovoi kvantovoi teorii polya, Mir, M., 1976
[45] Pich A., Operatornye idealy, Mir, M., 1982 | MR
[46] Khrennikov A. Yu., “Integrirovanie po obobschennym meram na topologicheskikh lineinykh prostranstvakh”, Tr. Mosk. matem. obschestva, 49, 1986, 113–129 | MR
[47] Daletskii Yu. L., Fomin S. V., Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1983 | MR
[48] Cameron R. H., “A family of integrals serving to connect the Wiener and Feynman integrals”, J. Math. and Phys., 39:2 (1960), 126–140 | MR | Zbl
[49] Khrennikov A. Yu., “Teorema suschestvovaniya resheniya beskonechnomernogo uravneniya Shredingera s kvadratichnym potentsialom”, Uspekhi matem. nauk, 39:1 (1984), 163–164 | MR | Zbl
[50] Frolov N. N., “Zadacha Koshi dlya beskonechnomernogo angarmonicheskogo ostsillyatora”, Tezisy dokl. shkoly po teorii operatorov v funktsionalnykh prostranstvakh, Minsk, 1982, 194–195
[51] Smolyanov O. G., “Lineinye differentsialnye operatory v prostranstvakh funktsii i mer na gilbertovom prostranstve”, Uspekhi matem. nauk, 28:5 (1973), 251–252 | MR | Zbl
[52] Khrennikov A. Yu., “Teorema suschestvovaniya resheniya stokhasticheskogo differentsialnogo uravneniya v lokalno vypuklom prostranstve”, Teoriya veroyatn. i ee primen., 1985, no. 1, 157–160 | MR | Zbl
[53] Khrennikov A. Yu., “Formula Ito v yadernom prostranstve”, Vestn. MGU, matematika, 1984, no. 1, 9–13 | MR | Zbl
[54] Khrennikov A. Yu., “Diffuzionnye protsessy v lineinykh prostranstvakh i psevdotopologii”, Tr. seminara im. I. G. Petrovskogo, 11, 1986, 190–209
[55] Mitoma Itaru, “Martingales of random distributions”, Mem. Fac. Sci. Kyushu Univ., 35:1 (1981), 185–203 | DOI | MR