Simple Lie~algebras in varieties generated by Lie algebras of cartan type
Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 541-573.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author proves that if $K$ is the algebra of regular functions of any smooth affine indecomposable algebraic variety ($\operatorname{char}K=0$) then it can be recovered from its Lie algebra of regular vector fields using a certain multilinear polynomial mapping. It is established that if, for some natural number $n$, a finitely generated Lie algebra $\mathscr G$ over an algebraically closed field $K$ ($\operatorname{char}K=0$) satisfies all identities of the Lie algebra $\widetilde W_n(K)$ of all derivations of the power series algebra in $n$ commuting variables, then $\mathscr G$ contains a proper subalgebra of finite codimension; moreover, for any maximal ideal $J$ of $\mathscr G$, either $\dim_K\mathscr G/J\leqslant n^2+2n$ or $\mathscr G/J$ can be embedded in $\widetilde W_n(K)$. Bibliography: 15 titles.
@article{IM2_1988_31_3_a5,
     author = {Yu. P. Razmyslov},
     title = {Simple {Lie~algebras} in varieties generated by {Lie} algebras of cartan type},
     journal = {Izvestiya. Mathematics },
     pages = {541--573},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a5/}
}
TY  - JOUR
AU  - Yu. P. Razmyslov
TI  - Simple Lie~algebras in varieties generated by Lie algebras of cartan type
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 541
EP  - 573
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a5/
LA  - en
ID  - IM2_1988_31_3_a5
ER  - 
%0 Journal Article
%A Yu. P. Razmyslov
%T Simple Lie~algebras in varieties generated by Lie algebras of cartan type
%J Izvestiya. Mathematics 
%D 1988
%P 541-573
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a5/
%G en
%F IM2_1988_31_3_a5
Yu. P. Razmyslov. Simple Lie~algebras in varieties generated by Lie algebras of cartan type. Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 541-573. http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a5/

[1] Cartan E., “Les groups de transformation continus, infinis, simpes”, Ann. Sci. Ecole Norm., 26 (1905), 93–161 | MR

[2] Kostrikin L. I., Shafarevich I. R., “Graduirovannye algebry Li konechnoi kharakteristiki”, Izv. AN SSSR. Ser. matem., 33:2 (1969), 251–322 | MR | Zbl

[3] Block R., Wilson R. L., “On filtered Lie algebras and derived power algebras”, Commun. Algebras, 3 (1975), 571–589 | DOI | MR | Zbl

[4] Razmyslov Yu. P., “Prostye algebry Li, udovletvoryayuschie standartnomu lievu tozhdestvu stepeni 5”, Izv. AN SSSR. Ser. matem., 49:3 (1985), 592–634 | MR | Zbl

[5] Mischenko S. P., “K probleme engelevosti”, Matem. sb., 124:1 (1984), 56–57 | MR

[6] Razmyslov Yu. P., “Tsentralnye polinomy v neprivodimykh predstavleniyakh poluprostoi algebry Li”, Matem. sb., 122:1 (1983), 97–125 | MR | Zbl

[7] Razmyslov Yu. P., “Konstruktivnoe vosstanovlenie gladkogo affinnogo algebraicheskogo mnogoobraziya po ego algebre Li vektornykh polei i prostye algebry Li, udovletvoryayuschie standartnomu lievu tozhdestvu stepeni 5”, Vestn. Kiev. un-ta. Matematika i mekhanika, 1985, no. 27, 94–96

[8] Razmyslov Yu. P., “Prostye algebry Li v mnogoobrazii, porozhdennom algebroi Li kartanovskogo tipa”, 18-ya Vsesoyuznaya algebraicheskaya konferentsiya, Ch. 2. Tez. soobsch., Kishinev, 1985, 120

[9] Leng S., Algebra, Mir, M., 1968

[10] Singer I. M., Sternberg S., “The infinite groups of Lie and Cartan”, J. Analyse Math., 15 (1965), 1–114 | DOI | MR | Zbl

[11] Veisfeiler B. Yu., “Beskonechnomernye filtrovannye algebry Li i ikh svyaz s graduirovannymi algebrami Li”, Funkts. analiz i ego prilozh., 2:1 (1968), 94–95 | MR | Zbl

[12] Diksme Zh.-P., Universalnye obertyvayuschie algebry, Mir, M., 1978 | MR

[13] Kaplanskii I., Vvedenie v differentsialnuyu algebru, IL, M., 1959

[14] Burbaki N., Gruppy i algebry Li, Mir, M., 1976 | MR

[15] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR | Zbl