Cycles on simple Abelian varieties of prime dimension over number fields
Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 527-540

Voir la notice de l'article provenant de la source Math-Net.Ru

For all simple Abelian varieties of prime dimension over number fields the author proves 1) a version of the Mumford–Tate conjecture, asserting that the Lie algebra of the image of the $l$-adic representation is isomorphic to the Lie algebra of the set of $\mathbf Q_l$-points of the Mumford–Tate group, and 2) the Tate conjecture on cycles. Bibliography: 21 titles.
@article{IM2_1988_31_3_a4,
     author = {S. G. Tankeev},
     title = {Cycles on simple {Abelian} varieties of prime dimension over number fields},
     journal = {Izvestiya. Mathematics },
     pages = {527--540},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a4/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - Cycles on simple Abelian varieties of prime dimension over number fields
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 527
EP  - 540
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a4/
LA  - en
ID  - IM2_1988_31_3_a4
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T Cycles on simple Abelian varieties of prime dimension over number fields
%J Izvestiya. Mathematics 
%D 1988
%P 527-540
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a4/
%G en
%F IM2_1988_31_3_a4
S. G. Tankeev. Cycles on simple Abelian varieties of prime dimension over number fields. Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 527-540. http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a4/