An~ergodic decomposition for homogeneous flows
Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 503-525

Voir la notice de l'article provenant de la source Math-Net.Ru

An ergodic decomposition of an arbitrary $G$-induced flow on a space $G/D$ of finite volume is constructed under the condition that a semisimple Levi subgroup $S$ of the connected Lie group $G$ does not have compact factors. A method is presented that allows the study of a homogeneous flow of this form to be reduced to the study of a family of homogeneous ergodic flows. Bibliography: 17 titles.
@article{IM2_1988_31_3_a3,
     author = {A. N. Starkov},
     title = {An~ergodic decomposition for homogeneous flows},
     journal = {Izvestiya. Mathematics },
     pages = {503--525},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a3/}
}
TY  - JOUR
AU  - A. N. Starkov
TI  - An~ergodic decomposition for homogeneous flows
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 503
EP  - 525
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a3/
LA  - en
ID  - IM2_1988_31_3_a3
ER  - 
%0 Journal Article
%A A. N. Starkov
%T An~ergodic decomposition for homogeneous flows
%J Izvestiya. Mathematics 
%D 1988
%P 503-525
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a3/
%G en
%F IM2_1988_31_3_a3
A. N. Starkov. An~ergodic decomposition for homogeneous flows. Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 503-525. http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a3/