An~ergodic decomposition for homogeneous flows
Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 503-525
Voir la notice de l'article provenant de la source Math-Net.Ru
An ergodic decomposition of an arbitrary $G$-induced flow on a space $G/D$ of finite volume is constructed under the condition that a semisimple Levi subgroup $S$ of the connected Lie group $G$ does not have compact factors. A method is presented that allows the study of a homogeneous flow of this form to be reduced to the study of a family of homogeneous ergodic flows.
Bibliography: 17 titles.
@article{IM2_1988_31_3_a3,
author = {A. N. Starkov},
title = {An~ergodic decomposition for homogeneous flows},
journal = {Izvestiya. Mathematics },
pages = {503--525},
publisher = {mathdoc},
volume = {31},
number = {3},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a3/}
}
A. N. Starkov. An~ergodic decomposition for homogeneous flows. Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 503-525. http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a3/