An~ergodic decomposition for homogeneous flows
Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 503-525.

Voir la notice de l'article provenant de la source Math-Net.Ru

An ergodic decomposition of an arbitrary $G$-induced flow on a space $G/D$ of finite volume is constructed under the condition that a semisimple Levi subgroup $S$ of the connected Lie group $G$ does not have compact factors. A method is presented that allows the study of a homogeneous flow of this form to be reduced to the study of a family of homogeneous ergodic flows. Bibliography: 17 titles.
@article{IM2_1988_31_3_a3,
     author = {A. N. Starkov},
     title = {An~ergodic decomposition for homogeneous flows},
     journal = {Izvestiya. Mathematics },
     pages = {503--525},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a3/}
}
TY  - JOUR
AU  - A. N. Starkov
TI  - An~ergodic decomposition for homogeneous flows
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 503
EP  - 525
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a3/
LA  - en
ID  - IM2_1988_31_3_a3
ER  - 
%0 Journal Article
%A A. N. Starkov
%T An~ergodic decomposition for homogeneous flows
%J Izvestiya. Mathematics 
%D 1988
%P 503-525
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a3/
%G en
%F IM2_1988_31_3_a3
A. N. Starkov. An~ergodic decomposition for homogeneous flows. Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 503-525. http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a3/

[1] Auslender L. i dr., Potoki na odnorodnykh prostranstvakh, Mir, M., 1986

[2] Moore C. C., “Ergodicity of flows on homogeneous spaces”, Amer. J. Math., 88:1 (1966), 154–178 | DOI | MR | Zbl

[3] Auslander L., “An exposition of the structure of solvmanifolds”, Bull. Amer. Math. Soc., 79:2 (1973), 227–285 | DOI | MR

[4] Dani S. G., “Spectrum of an affine transformations”, Duke J. Math., 44:1 (1977) | DOI | MR

[5] Brezin J., Moore C. C., “Flows on homogeneous spaces: a new look”, Amer. J. Math., 103:3 (1981), 571–613 | DOI | MR | Zbl

[6] Starkov A. N., “O prostranstvakh konechnogo ob'ema”, Vestn. MGU, 1986, no. 5, 64–65 | MR

[7] Starkov A. N., “Ergodicheskoe povedenie potokov na odnorodnykh prostranstvakh”, Dokl. AN SSSR, 273:3 (1983), 538–540 | MR | Zbl

[8] Starkov A. N., “Potoki na kompaktnykh razreshimykh mnogoobraziyakh”, Matem. sb., 123:4 (1984), 549–556 | MR

[9] Starkov A. N., “Neergodicheskie odnorodnye potoki”, Dokl. AN SSSR, 288:3 (1986), 560–562 | MR | Zbl

[10] Starkov A. N., “Kontrprimer k odnoi teoreme o reshetkakh v gruppakh Li”, Vestn. MGU, 1984, no. 5, 68–69 | MR | Zbl

[11] Rieffel M. A., “Ergodic decomposition for pairs of lattices”, J. Reine Angew., 326:1 (1981), 45–53 | MR | Zbl

[12] Moore C. C., “The Mautner phenomenon for general unitary representations”, Pacific J. Math., 86:1 (1980), 154–169 | MR

[13] Auslender L., Grin L., $G$-indutsirovannye potoki; Ауслендер Л., Потоки на однородных пространствах, Мир, М., 1966 | MR

[14] Auslander L., Brezin J., “Almont algebraic Lie algebras”, J. Algebra, 8:4 (1968) | MR | Zbl

[15] Shevalle K., Teoriya grupp Li, t. 3, IL, M., 1958

[16] Ragunatan M., Diskretnye podgruppy grupp Li, Mir, M., 1977 | MR

[17] Dani S. G., “Strictly non-ergodic actions on homogeneous spaces”, Duke J. Math., 47:3 (1980), 633–639 | DOI | MR | Zbl