On~approximations of compact sets of functions by piecewise polynomial surfaces
Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 455-480.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is concerned with approximations of certain concrete sets of functions of a single real (or complex) variable by families of functions that depend in a piecewise polynomial and smooth manner on several real parameters. A study is made of how the accuracy of such approximations is connected with the number of parameters, the degree, the number of “pieces”, and the smoothness of the approximating families of functions. Bibliography: 5 titles.
@article{IM2_1988_31_3_a1,
     author = {S. N. Kudryavtsev},
     title = {On~approximations of compact sets of functions by piecewise polynomial surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {455--480},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a1/}
}
TY  - JOUR
AU  - S. N. Kudryavtsev
TI  - On~approximations of compact sets of functions by piecewise polynomial surfaces
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 455
EP  - 480
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a1/
LA  - en
ID  - IM2_1988_31_3_a1
ER  - 
%0 Journal Article
%A S. N. Kudryavtsev
%T On~approximations of compact sets of functions by piecewise polynomial surfaces
%J Izvestiya. Mathematics 
%D 1988
%P 455-480
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a1/
%G en
%F IM2_1988_31_3_a1
S. N. Kudryavtsev. On~approximations of compact sets of functions by piecewise polynomial surfaces. Izvestiya. Mathematics , Tome 31 (1988) no. 3, pp. 455-480. http://geodesic.mathdoc.fr/item/IM2_1988_31_3_a1/

[1] Vitushkin A. G., Otsenka slozhnosti zadachi tabulirovaniya, Fizmatgiz, M., 1959

[2] Ivanov L. D., Variatsii mnozhestv i funktsii, Nauka, M., 1975 | MR

[3] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, Uspekhi matem. nauk, 14:2 (1959), 3–86 | MR

[4] Kudryavtsev S. N., “Ob approksimatsiyakh funktsionalnykh kompaktov algebraicheskimi poverkhnostyami”, Izv. AN SSSR. Ser. matem., 49:6 (1985), 1246–1259 | MR

[5] Warren H. E., “A construction of certain nonlinear approximating families”, Proc. Amer. Math. Soc., 21:2 (1969), 467–470 | DOI | MR | Zbl