Transformations of special spines and the Zeeman conjecture
Izvestiya. Mathematics , Tome 31 (1988) no. 2, pp. 423-434.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two transformations, called elementary, are defined for special spines, and it is shown that any one special spine of aЁ3-manifold can be obtained from any other by a sequence of elementary transformations and their inverses. Applications are made to the Zeeman conjecture on 1-collapsibility of 2-dimensional contractible polyhedra. Figures: 7. Bibliography: 6 titles.
@article{IM2_1988_31_2_a8,
     author = {S. V. Matveev},
     title = {Transformations of special spines and the {Zeeman} conjecture},
     journal = {Izvestiya. Mathematics },
     pages = {423--434},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_2_a8/}
}
TY  - JOUR
AU  - S. V. Matveev
TI  - Transformations of special spines and the Zeeman conjecture
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 423
EP  - 434
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_31_2_a8/
LA  - en
ID  - IM2_1988_31_2_a8
ER  - 
%0 Journal Article
%A S. V. Matveev
%T Transformations of special spines and the Zeeman conjecture
%J Izvestiya. Mathematics 
%D 1988
%P 423-434
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_31_2_a8/
%G en
%F IM2_1988_31_2_a8
S. V. Matveev. Transformations of special spines and the Zeeman conjecture. Izvestiya. Mathematics , Tome 31 (1988) no. 2, pp. 423-434. http://geodesic.mathdoc.fr/item/IM2_1988_31_2_a8/

[1] Zeeman E. C., Seminar on combinatorial topology, Inst. Hautes Etudes. Sci., Paris, 1963

[2] Casler B. G., “An embedding theorem for connected 3-manifolds with boundary”, Proc. Amer. Math. Soc., 16 (1965), 559–566 | DOI | MR | Zbl

[3] Matveev S. V., “Spetsialnye ostovy kusochno lineinykh mnogoobrazii”, Matem. sb., 92:2 (1973), 282–293 | MR | Zbl

[4] Matveev S. V., Savvateev V. V., “Trekhmernye mnogoobraziya, imeyuschie prostye spetsialnye ostovy”, Colloquium Mathematicum, XXXII:1 (1974), 83–97

[5] Ikeda H., “Finding simpler spines for acyclic 3-manifolds”, Math. Semin. Notes Kobe Univ., 10:1 (1982), 57–68 | MR | Zbl

[6] Gillman D., Rolfsen D., “The Zeeman conjecture for standard spines is equivalent to the Poincare conjecture”, Topology, 22:3 (1983), 315–323 | DOI | MR | Zbl