Splitting of the separatrices and the nonexistence of first integrals in systems of differential equations of Hamiltonian type with two degrees of freedom
Izvestiya. Mathematics , Tome 31 (1988) no. 2, pp. 407-421.

Voir la notice de l'article provenant de la source Math-Net.Ru

An investigation is made of the phenomenon of splitting of the real and complex separatrices of hyperbolic cycles of systems of differential equations of Hamiltonian type with two degrees of freedom, and of its connection with the absence of additional meromorphic first integrals for these systems. The results obtained are used to prove the absence of a nonconstant meromorphic first integral in a system describing a stationary flow of an ideal incompressible fluid with periodic boundary conditions and with velocity field collinear with its curl. Bibliography: 15 titles.
@article{IM2_1988_31_2_a7,
     author = {S. L. Ziglin},
     title = {Splitting of the separatrices and the nonexistence of first integrals in systems of differential equations of {Hamiltonian} type with two degrees of freedom},
     journal = {Izvestiya. Mathematics },
     pages = {407--421},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_2_a7/}
}
TY  - JOUR
AU  - S. L. Ziglin
TI  - Splitting of the separatrices and the nonexistence of first integrals in systems of differential equations of Hamiltonian type with two degrees of freedom
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 407
EP  - 421
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_31_2_a7/
LA  - en
ID  - IM2_1988_31_2_a7
ER  - 
%0 Journal Article
%A S. L. Ziglin
%T Splitting of the separatrices and the nonexistence of first integrals in systems of differential equations of Hamiltonian type with two degrees of freedom
%J Izvestiya. Mathematics 
%D 1988
%P 407-421
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_31_2_a7/
%G en
%F IM2_1988_31_2_a7
S. L. Ziglin. Splitting of the separatrices and the nonexistence of first integrals in systems of differential equations of Hamiltonian type with two degrees of freedom. Izvestiya. Mathematics , Tome 31 (1988) no. 2, pp. 407-421. http://geodesic.mathdoc.fr/item/IM2_1988_31_2_a7/

[1] Puankare A., Novye metody nebesnoi mekhaniki. Izbrannye trudy, t. 1, Nauka, M., 1971

[2] Melnikov V. K., “Ob ustoichivosti tsentra pri periodicheski deistvuyuschikh vozmuscheniyakh”, Tr. Mosk. matem. ob-va, 12, 1963, 3–52 | MR

[3] Arnold V. I., “O neustoichivosti dinamicheskikh sistem s mnogimi stepenyami svobody”, Dokl. AN SSSR, 156:1 (1964), 9–12

[4] Kozlov V. V., “Rasscheplenie separatris vozmuschennoi zadachi Eilera–Puanso”, Vestn. MGU. Ser. matem.-mekh., 1976, no. 6, 99–104 | MR | Zbl

[5] Ziglin S. L., “Rasscheplenie separatris, vetvlenie reshenii i nesuschestvovanie integrala v dinamike tverdogo tela”, Tr. Mosk. matem. ob-va, 41, 1980, 287–303 | MR

[6] Ziglin S. L., “Samoperesechenie kompleksnykh separatris i nesuschestvovanie integralov v gamiltonovykh sistemakh s polutora stepenyami svobody”, Prikl. matematika i mekhanika, 45:3 (1981), 564–566 | MR | Zbl

[7] Moser J., “The analytical invariants of an area-preserving mapping near a hyperbolic fixed point”, Comm. Pure and Appl. Math., 9:4 (1956), 673–692 | DOI | MR | Zbl

[8] Zigmund A., Trigonometricheskie ryady, t. 1, Mir, M., 1965 | MR

[9] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[10] Puankare A., O probleme trekh tel i ob uravneniyakh dinamiki. Izbrannye trudy, t. 2, Nauka, M., 1972

[11] Kozlov V. V., “O kolebaniyakh odnomernykh sistem s periodicheskim potentsialom”, Vestn. MGU. Ser. matem.-mekh., 1980, no. 6, 104–107 | MR | Zbl

[12] Puankare A., Novye metody nebesnoi mekhaniki. Izbrannye trudy, t. 2, Nauka, M., 1972

[13] Alekseev V. M., “Kvazisluchainye dinamicheskie sistemy. III: Kvazisluchainye kolebaniya odnomernykh ostsillyatorov”, Matem. sb., 78:1 (1969), 3–50 | Zbl

[14] Cushman R., “Examples of nonintegrable analytic Hamiltonian vector fields with no small divisors”, Trans. of Amer. Math. Soc., 238:1 (1978), 45–55 | DOI | MR | Zbl

[15] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, Uspekhi matem. nauk, 38:1 (1983), 3–67 | MR | Zbl