On~oscillatory motions in a~certain dynamical system
Izvestiya. Mathematics , Tome 31 (1988) no. 2, pp. 325-347
Voir la notice de l'article provenant de la source Math-Net.Ru
A rigorous mathematical justification is given for the possibility of unbounded growth of the energy of a relativistic charged particle in a constant magnetic field and a periodic electric field. It is proved that there is an open subset of initial data with infinite Lebesgue measure in the five-dimensional extended phase space for which the energy of the particle tends to infinity.
Bibliography: 11 titles.
@article{IM2_1988_31_2_a4,
author = {L. D. Pustyl'nikov},
title = {On~oscillatory motions in a~certain dynamical system},
journal = {Izvestiya. Mathematics },
pages = {325--347},
publisher = {mathdoc},
volume = {31},
number = {2},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_2_a4/}
}
L. D. Pustyl'nikov. On~oscillatory motions in a~certain dynamical system. Izvestiya. Mathematics , Tome 31 (1988) no. 2, pp. 325-347. http://geodesic.mathdoc.fr/item/IM2_1988_31_2_a4/