On~oscillatory motions in a~certain dynamical system
Izvestiya. Mathematics , Tome 31 (1988) no. 2, pp. 325-347

Voir la notice de l'article provenant de la source Math-Net.Ru

A rigorous mathematical justification is given for the possibility of unbounded growth of the energy of a relativistic charged particle in a constant magnetic field and a periodic electric field. It is proved that there is an open subset of initial data with infinite Lebesgue measure in the five-dimensional extended phase space for which the energy of the particle tends to infinity. Bibliography: 11 titles.
@article{IM2_1988_31_2_a4,
     author = {L. D. Pustyl'nikov},
     title = {On~oscillatory motions in a~certain dynamical system},
     journal = {Izvestiya. Mathematics },
     pages = {325--347},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_2_a4/}
}
TY  - JOUR
AU  - L. D. Pustyl'nikov
TI  - On~oscillatory motions in a~certain dynamical system
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 325
EP  - 347
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_31_2_a4/
LA  - en
ID  - IM2_1988_31_2_a4
ER  - 
%0 Journal Article
%A L. D. Pustyl'nikov
%T On~oscillatory motions in a~certain dynamical system
%J Izvestiya. Mathematics 
%D 1988
%P 325-347
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_31_2_a4/
%G en
%F IM2_1988_31_2_a4
L. D. Pustyl'nikov. On~oscillatory motions in a~certain dynamical system. Izvestiya. Mathematics , Tome 31 (1988) no. 2, pp. 325-347. http://geodesic.mathdoc.fr/item/IM2_1988_31_2_a4/