The distribution of pairs of quadratic residues and nonresidues of a~special form
Izvestiya. Mathematics , Tome 31 (1988) no. 2, pp. 307-323.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nontrivial estimates are obtained for sums of Legendre symbols of a quadratic polynomial over primes in an arithmetic progression. These estimates are used to prove a theorem concerning the number of pairs of the form $(p+a,p+b)$, $p\equiv l(\operatorname{mod}k)$, $p\leqslant N$, for which $p+a$ is a quadratic residue (nonresidue), $p+b$ is a quadratic residue (nonresidue) modulo the prime $q$, and $N>k^3q^{0.75+\varepsilon}$. Bibliography: 27 titles.
@article{IM2_1988_31_2_a3,
     author = {A. A. Karatsuba},
     title = {The distribution of pairs of quadratic residues and nonresidues of a~special form},
     journal = {Izvestiya. Mathematics },
     pages = {307--323},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_2_a3/}
}
TY  - JOUR
AU  - A. A. Karatsuba
TI  - The distribution of pairs of quadratic residues and nonresidues of a~special form
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 307
EP  - 323
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_31_2_a3/
LA  - en
ID  - IM2_1988_31_2_a3
ER  - 
%0 Journal Article
%A A. A. Karatsuba
%T The distribution of pairs of quadratic residues and nonresidues of a~special form
%J Izvestiya. Mathematics 
%D 1988
%P 307-323
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_31_2_a3/
%G en
%F IM2_1988_31_2_a3
A. A. Karatsuba. The distribution of pairs of quadratic residues and nonresidues of a~special form. Izvestiya. Mathematics , Tome 31 (1988) no. 2, pp. 307-323. http://geodesic.mathdoc.fr/item/IM2_1988_31_2_a3/

[1] Vinogradov I. M., “Sur la distribution des residus et des nonresidues des puissances”, Zhurn. fiz.-matem. ob-va pri Permskom un-te, 1 (1918), 94–98

[2] Vinogradov I. M., “O raspredelenii kvadratichnykh vychetov i nevychetov”, Zhurn. fiz.-matem. ob-va pri Permskom un-te, 2 (1919), 1–16

[3] Vinogradov I. M., “Novye teoremy o raspredelenii kvadratichnykh vychetov”, Dokl. AN SSSR, 1 (1934), 289–290 | Zbl

[4] Vinogradov I. M., “Raspredelenie kvadratichnykh vychetov i nevychetov vida $p+k$ po prostomu modulyu”, Matem. sb., 3(45) (1938), 311–320

[5] Vinogradov I. M., “Novyi podkhod k otsenke summy znachenii $\chi(p+k)$”, Izv. AN SSSR. Ser. matem., 16 (1952), 197–210 | MR | Zbl

[6] Vinogradov I. M., Izbrannye trudy, AN SSSR, M., 1952 | MR | Zbl

[7] Vinogradov I. M., “Uluchshenie otsenki dlya summy znachenii $\chi(p+k)$”, Izv. AN SSSR. Ser. matem., 17 (1953), 285–290 | MR | Zbl

[8] Vinogradov I. M., “Otsenka odnoi summy, rasprostranennoi na prostye chisla arifmeticheskoi progressii”, Izv. AN SSSR. Ser. matem., 30 (1966), 481–496 | MR | Zbl

[9] Linnik Yu. V., “Teoriya chisel”, Matematika v SSSR za sorok let 1917–1957, t. 1, Fizmatgiz, M., 1959, 121–150

[10] Perelmuter G. I., “Otsenka odnoi summy s prostymi chislami”, Dokl. AN SSSR, 144:1 (1962), 48–51 | MR

[11] Davenport H., “On primitive roots in finite fields”, Quarterly J. of Math., 8 (1937), 308–312 | DOI | Zbl

[12] Davenport H., Lewis D. J., “Character sums and primitive roots in finite fields”, Rend. Circ. Mat. Palermo, 12 (1963), 1–8 | DOI | MR

[13] Burgess D. A., “The distribution of quadratic residues and nonresidues”, Mathematika, 4 (1957), 106–112 | MR | Zbl

[14] Burgess D. A., “On Dirichlet characters of polynomials”, Proc. London Math. Soc., 13 (1963), 537–548 | DOI | MR | Zbl

[15] Burgess D. A., “On the quadratic character of a polynomial”, Journ. London Math. Soc., 42 (1967), 73–80 | DOI | MR | Zbl

[16] Burgess D. A., “Character sums and primitive roots in finite fields”, Proc. London Math. Soc., 17 (1967), 11–25 | DOI | MR | Zbl

[17] Burgess D. A., “A note on character sums of binary quadratic forms”, Journ. London Math. Soc., 43 (1968), 271–274 | DOI | MR | Zbl

[18] Karatsuba A. A., “Summy kharakterov i pervoobraznye korni v konechnykh polyakh”, Dokl. AN SSSR, 180:6 (1968), 1287–1289 | Zbl

[19] Karatsuba A. A., “O summakh kharakterov s prostymi chislami”, Dokl. AN SSSR, 190:3 (1970), 517–518 | MR | Zbl

[20] Karatsuba A. A., “Ob otsenkakh summ kharakterov”, Izv. AN SSSR. Ser. matem., 34 (1970), 20–30 | Zbl

[21] Karatsuba A. A., “Summy kharakterov s prostymi chislami”, Izv. AN SSSR. Ser. matem., 34 (1970), 299–321 | Zbl

[22] Karatsuba A. A., “Summy kharakterov s prostymi chislami, prinadlezhaschimi arifmeticheskoi progressii”, Izv. AN SSSR. Ser. matem., 35 (1971), 469–484 | Zbl

[23] Karatsuba A. A., “O raspredelenii znachenii neglavnykh kharakterov”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 142, 1976, 156–164 | MR | Zbl

[24] Karatsuba A. A., “Raspredelenie znachenii simvolov Lezhandra ot mnogochlenov s prostymi chislami”, Dokl. AN SSSR, 238:3 (1978), 524–526 | MR | Zbl

[25] Karatsuba A. A., “Summy simvolov Lezhandra ot mnogochlenov vtoroi stepeni s prostymi chislami”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 315–324 | MR | Zbl

[26] Karatsuba A. A., “Kvadratichnye vychety i nevychety v redkikh posledovatelnostyakh”, Dokl. AN SSSR, 279:5 (1984), 1044–1046 | MR

[27] Fogels E. K., “O prostykh chislakh v nachale arifmeticheskoi progressii”, Dokl. AN SSSR, 102:3 (1955), 455–456 | MR | Zbl