On~representations of an algebra of pseudodifferential operators with multidimensional discontinuities in the symbols
Izvestiya. Mathematics , Tome 31 (1988) no. 1, pp. 143-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article considers $C^*$-algebras generated by pseudodifferential operators on a smooth $m$-dimensional manifold $\mathscr M$ without boundary. The symbols of the operators are allowed to have discontinuities “of the first kind” along submanifolds of codimension $n$, $1\leqslant n\leqslant m-1$. The operators act in the space $L_2(\mathscr M)$. All irreducible representations (to within equivalence), including two series of infinitedimensional representations, are given for such algebras. Necessary and sufficient conditions for the Fredholm property are determined for arbitrary elements of the algebras. The topology on the spectrum of the algebras is described. A composition series is determined whose successive quotients are isomorphic to algebras of the form $C_0(X)\otimes \mathscr{KH}$, where $X$ is a locally compact space, $C_0(X)$ is the set of continuous functions tending to zero at infinity, and $\mathscr{KH}$ is the ideal of compact operators on a Hilbert space $\mathscr H$. Among the composition series having this property the indicated series is the shortest. Bibliography: 9 titles.
@article{IM2_1988_31_1_a5,
     author = {B. A. Plamenevskii and V. N. Senichkin},
     title = {On~representations of an algebra of pseudodifferential operators with multidimensional discontinuities in the symbols},
     journal = {Izvestiya. Mathematics },
     pages = {143--169},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a5/}
}
TY  - JOUR
AU  - B. A. Plamenevskii
AU  - V. N. Senichkin
TI  - On~representations of an algebra of pseudodifferential operators with multidimensional discontinuities in the symbols
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 143
EP  - 169
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a5/
LA  - en
ID  - IM2_1988_31_1_a5
ER  - 
%0 Journal Article
%A B. A. Plamenevskii
%A V. N. Senichkin
%T On~representations of an algebra of pseudodifferential operators with multidimensional discontinuities in the symbols
%J Izvestiya. Mathematics 
%D 1988
%P 143-169
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a5/
%G en
%F IM2_1988_31_1_a5
B. A. Plamenevskii; V. N. Senichkin. On~representations of an algebra of pseudodifferential operators with multidimensional discontinuities in the symbols. Izvestiya. Mathematics , Tome 31 (1988) no. 1, pp. 143-169. http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a5/

[1] Plamenevskii B. A., Senichkin V. N., “O spektre $C^*$-algebr, porozhdennykh psevdodifferentsialnymi operatorami s razryvnymi simvolami”, Izv. AN SSSR. Ser. matem., 47:6 (1983), 1263–1284 | MR | Zbl

[2] Plamenevskii B. A., Senichkin V. N., “O spektre $C^*$-algebr psevdodifferentsialnykh operatorov s osobennostyami v simvolakh”, Math. Nachr., 121 (1985), 231–268 | DOI | MR | Zbl

[3] Plamenevskii B. A., Senichkin V. N., “Spektr algebry psevdodifferentsialnykh operatorov s razryvnymi simvolami na mnogoobrazii s kraem”, Dokl. AN SSSR, 277 (1984), 1327–1330 | MR | Zbl

[4] Diksme Zh., $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR

[5] Plamenevskii B. A., “Ob ogranichennosti singulyarnykh integralov v prostranstvakh s vesom”, Matem. sb., 76:4 (1968), 573–592 | MR | Zbl

[6] Plamenevskii B. A., “Ob algebre psevdodifferentsialnykh operatorov v prostranstvakh s vesovymi normami”, Matem. sb., 106:2 (1978), 296–320 | MR | Zbl

[7] Plamenevskii B. A., “Ob algebrakh, porozhdennykh psevdodifferentsialnymi operatorami s izolirovannymi osobennostyami simvolov”, Spektralnaya teoriya. Volnovye protsessy, Leningr. un-t, L., 1981, 209–241 | MR

[8] Kuiper N. H., “The homotopy type of the unitary group of Hilbert space”, Topology, 3:1 (1965), 19–30 ; M. Atya, Lektsii po $K$teorii. Prilozhenie, IV, Mir, M., 1967 | DOI | MR | Zbl | MR

[9] Dynin A., “Inversion problem for singular integral operators: $C^*$-approach”, Proc. Nat. Acad. Sci. U.S.A., 75 (1978), 4668–4670 | DOI | MR | Zbl