On~the spectral theory of multiparameter difference equations of second order
Izvestiya. Mathematics , Tome 31 (1988) no. 1, pp. 95-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let \begin{gather*} a_{n_r-1,r}y_{n_r-1,r}+b_{n_r,r}y_{n_r,r}+a_{n_r,r}y_{n_r+1,r}= \biggl(\sum_{s=1}^k\lambda_s c_{n_r,r,s}\biggr)y_{n_r,r},\\ r=1,\dots,k, \end{gather*} be a system of $k$ second-order difference equations (with real coefficients) containing $k$ spectral parameters $\lambda_1,\dots,\lambda_k$. The existence of spectral measures is established in the cases when $n_1,\dots,n_k$ run through the integer points of the semiaxis and of the whole axis, the properties of the spectral measures are studied, and with their help formulas are written out for expansions in eigenvectors of this system. The case of periodic coefficients is investigated in greater detail. Bibliography: 14 titles.
@article{IM2_1988_31_1_a3,
     author = {G. Sh. Guseinov},
     title = {On~the spectral theory of multiparameter difference equations of second order},
     journal = {Izvestiya. Mathematics },
     pages = {95--120},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a3/}
}
TY  - JOUR
AU  - G. Sh. Guseinov
TI  - On~the spectral theory of multiparameter difference equations of second order
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 95
EP  - 120
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a3/
LA  - en
ID  - IM2_1988_31_1_a3
ER  - 
%0 Journal Article
%A G. Sh. Guseinov
%T On~the spectral theory of multiparameter difference equations of second order
%J Izvestiya. Mathematics 
%D 1988
%P 95-120
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a3/
%G en
%F IM2_1988_31_1_a3
G. Sh. Guseinov. On~the spectral theory of multiparameter difference equations of second order. Izvestiya. Mathematics , Tome 31 (1988) no. 1, pp. 95-120. http://geodesic.mathdoc.fr/item/IM2_1988_31_1_a3/

[1] Atkinson F. V., “Boundary problems leading to orthogonal polynomials in several variables”, Bull. Amer. Math. Soc., 69 (1963), 345–351 | DOI | MR | Zbl

[2] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR

[3] Akhiezer N. I., Klassicheskaya problema momentov, Fizmatgiz, M., 1961

[4] Guseinov G. Sh., “Razlozheniya po sobstvennym funktsiyam mnogoparametricheskikh differentsialnykh i raznostnykh uravnenii s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 253:5 (1980), 1040–1043 | MR

[5] Browne P. J., “A singular multi-parameter eigenvalue problem in second order ordinary differential equations”, J. Differential Equations, 12 (1972), 81–94 | DOI | MR | Zbl

[6] Browne P. J., “Multi-parameter problems”, Lect. Notes in Math., 415, 1974, 78–84 | MR | Zbl

[7] Isaev G. A., “Razlozhenie po sobstvennym funktsiyam samosopryazhennykh singulyarnykh mnogoparametricheskikh differentsialnykh operatorov”, Dokl. AN SSSR, 260:4 (1981), 786–790 | MR | Zbl

[8] Atkinson F. B., Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968 | MR | Zbl

[9] Gelfand I. M., “Razlozheniya po sobstvennym funktsiyam uravneniya s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 73:6 (1950), 1117–1120 | MR

[10] Binding P. A., Browne P. J., “A variational approach to multi-parameter eigenvalue problems for matrices”, SIAM J. Math. Anal., 8 (1977), 763–777 | DOI | MR | Zbl

[11] Browne P. J., “Multi-parameter spectral theory”, Indiana Univ. Math. J., 24 (1974), 249–257 | DOI | MR | Zbl

[12] Tolstov G. P., Mera i integral, Nauka, M., 1976 | MR | Zbl

[13] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR

[14] Shilov G. E., Gurevich B. L., Integral, mera i proizvodnaya, Nauka, M., 1967