On~measures with the doubling condition
Izvestiya. Mathematics , Tome 30 (1988) no. 3, pp. 629-638
Voir la notice de l'article provenant de la source Math-Net.Ru
The author characterizes metric spaces $(X,\rho)$ that carry a nontrivial measure $\mu$ with the doubling condition
$$
\forall\,x\in X,\quad R>0\qquad \mu(B(x,2R))\leqslant C\mu(B(x,R)),
$$
where $B(x,R)=\{y:\rho(x,y)\leqslant R\}$. In particular, such a measure exists on any compact set in $\mathbf R^n$.
Bibliography: 14 titles.
@article{IM2_1988_30_3_a9,
author = {A. L. Vol'berg and S. V. Konyagin},
title = {On~measures with the doubling condition},
journal = {Izvestiya. Mathematics },
pages = {629--638},
publisher = {mathdoc},
volume = {30},
number = {3},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a9/}
}
A. L. Vol'berg; S. V. Konyagin. On~measures with the doubling condition. Izvestiya. Mathematics , Tome 30 (1988) no. 3, pp. 629-638. http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a9/