Approximation of functions on the sphere
Izvestiya. Mathematics , Tome 30 (1988) no. 3, pp. 599-614.

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors consider classes $H_p^r(\sigma)$ of functions $f$ on a sphere $\sigma$, whose smoothness is determined by the properties of differences along geodesics (duly averaged) in the metric of $L_p(\sigma)$. An integral representation of a function $f \in L_p(\sigma)$ is obtained in terms of the differences mentioned. On this basis direct and inverse theorems on approximation of functions $f \in H_p^r(\sigma)$ be polynomials in spherical harmonics are established. These theorems completely characterize the class $H_p^r(\sigma)$. Bibliography: 9 titles.
@article{IM2_1988_30_3_a7,
     author = {S. M. Nikol'skii and P. I. Lizorkin},
     title = {Approximation of functions on the sphere},
     journal = {Izvestiya. Mathematics },
     pages = {599--614},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a7/}
}
TY  - JOUR
AU  - S. M. Nikol'skii
AU  - P. I. Lizorkin
TI  - Approximation of functions on the sphere
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 599
EP  - 614
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a7/
LA  - en
ID  - IM2_1988_30_3_a7
ER  - 
%0 Journal Article
%A S. M. Nikol'skii
%A P. I. Lizorkin
%T Approximation of functions on the sphere
%J Izvestiya. Mathematics 
%D 1988
%P 599-614
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a7/
%G en
%F IM2_1988_30_3_a7
S. M. Nikol'skii; P. I. Lizorkin. Approximation of functions on the sphere. Izvestiya. Mathematics , Tome 30 (1988) no. 3, pp. 599-614. http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a7/

[1] Berens H., Butzer P. L., Pawelke S., “Limitierungsverfahren von Reien mehrdimensionaler Kugelfunctionen und deren Saturationsverhalten”, Publ. RIMS, ser. A, 4:2 (1968), 201–268 | DOI | MR | Zbl

[2] Kushnirenko G. G., “Nekotorye voprosy priblizheniya nepreryvnykh funktsii na edinichnoi sfere konechnymi sfericheskimi summami”, Tr. Khark. Politekh. in-ta. Ser. inzh.-fiz., 25, no. 3, 1959, 3–22

[3] Butzer P. L., Johnen H., “Lipschitz spaces on compact manifolds”, J. Funct. Anal., 7:2 (1971), 242–266 | DOI | MR | Zbl

[4] Pawelke S., “Über Approximationordnung bei Kugelfunctionen und algebraischen Polinomen”, Tohoku Math. J., 24:4 (1972), 473–486 | DOI | MR | Zbl

[5] Nikolskii S. M., Lizorkin P. I., “Otsenki dlya proizvodnykh garmonicheskikh i sfericheskikh polinomov v $L_p$”, Acta Sci. Math., 48 (1985), 401–416 | MR

[6] Lizorkin P. I., Nikolskii S. M., “Teorema ob approksimatsii na sfere”, Anal. Math., 9:3 (1983), 207–221 | DOI | MR | Zbl

[7] Nikolskii S. M., Lizorkin P. I., “Priblizhenie sfericheskimi polinomami”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 166, 1984, 186–200 | MR

[8] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, II, Nauka, M., 1974

[9] Bonami A., Clerc I.-L., “Sommes de Cesaro et multiplicateurs des developpements en harmoniques spheriques”, Trans. Amer. Math. Soc., 183 (1973), 223–263 | DOI | MR | Zbl