On cuspidal divisors on the modular varieties of elliptic modules
Izvestiya. Mathematics, Tome 30 (1988) no. 3, pp. 533-547
Cet article a éte moissonné depuis la source Math-Net.Ru
Elliptic modules of arbitrary rank are considered over the polynomial ring $F_q[t]$. A compactification of the modular varieties that parametrizes such modules is constructed. A generalization of the Manin-Drinfel'd theorem on modular curves is proved: the difference of two adherent components of codimension 1 has finite order in the Picard group. Bibliography: 7 titles.
@article{IM2_1988_30_3_a4,
author = {M. M. Kapranov},
title = {On~cuspidal divisors on the modular varieties of elliptic modules},
journal = {Izvestiya. Mathematics},
pages = {533--547},
year = {1988},
volume = {30},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a4/}
}
M. M. Kapranov. On cuspidal divisors on the modular varieties of elliptic modules. Izvestiya. Mathematics, Tome 30 (1988) no. 3, pp. 533-547. http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a4/
[1] Leng S., Vvedenie v teoriyu modulyarnykh form, Mir, M., 1979 | MR
[2] Drinfeld V. G., “Ellipticheskie moduli”, Matem. sb., 94:4 (1974), 594–627 | MR
[3] Gekeler E.-U., “Moduläre Einheiten für Funktionenkörper”, J. Reine und Angew. Math., 348 (1984), 94–115 | MR | Zbl
[4] Goss D., “$\pi$-adic Eisenstein series for function fields”, Compositio Math., 41:1 (1981), 3–38 | MR
[5] Gerritzen L., van der Put M., Schottky groups and Mumford curves, Lecture Notes in Math., 817, 1980 | MR | Zbl
[6] Kubert D., Lang S., Modular units, Springer, Berlin, Heidelberg, New York, 1981 | MR | Zbl
[7] Stefǎnescu D., “On meromorphic formal power series”, Bull. Math. de la Soc. Sci. Math. de la R.S. de Roumanie, 27:2 (1983), 169–178 | MR | Zbl