Estimates of the rate of convergence in solving ill-posed problems for evolution equations
Izvestiya. Mathematics , Tome 30 (1988) no. 3, pp. 639-651.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a Banach space estimates of the rate of convergence are obtained for regularization methods, quasireversibility and pseudoregularization in solving ill-posed problems for evolution equations. The investigation is based on the theory of operator semigroups and discrete approximation. Bibliography: 38 titles.
@article{IM2_1988_30_3_a10,
     author = {S. I. Piskarev},
     title = {Estimates of the rate of convergence in solving ill-posed problems for evolution equations},
     journal = {Izvestiya. Mathematics },
     pages = {639--651},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a10/}
}
TY  - JOUR
AU  - S. I. Piskarev
TI  - Estimates of the rate of convergence in solving ill-posed problems for evolution equations
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 639
EP  - 651
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a10/
LA  - en
ID  - IM2_1988_30_3_a10
ER  - 
%0 Journal Article
%A S. I. Piskarev
%T Estimates of the rate of convergence in solving ill-posed problems for evolution equations
%J Izvestiya. Mathematics 
%D 1988
%P 639-651
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a10/
%G en
%F IM2_1988_30_3_a10
S. I. Piskarev. Estimates of the rate of convergence in solving ill-posed problems for evolution equations. Izvestiya. Mathematics , Tome 30 (1988) no. 3, pp. 639-651. http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a10/

[1] Bakaev N. Yu., “Polugruppy operatorov i differentsialnye uravneniya v banakhovom prostranstve”, Dokl. AN SSSR, 258:3 (1981), 521–525 | MR | Zbl

[2] Bakushinskii A. B., “Raznostnye skhemy dlya resheniya nekorrektnykh abstraktnykh zadach Koshi”, Diff. uravn., 7:10 (1971), 1876–1885

[3] Bakushinskii A. B., “Raznostnye metody resheniya nekorrektnykh zadach Koshi dlya evolyutsionnykh uravnenii v kompleksnom $B$-prostranstve”, Diff. uravn., 8:9 (1972), 1661–1668

[4] Zeinalov I. S., “Ob odnoi nekorrektnoi zadache dlya abstraktnogo parabolicheskogo uravneniya v banakhovom prostranstve”, DAN Azerb. SSR, 37:9 (1981), 7–9 | MR | Zbl

[5] Krein S. G., Prozorovskaya O. I., “Analiticheskie polugruppy i nekorrektnye zadachi dlya evolyutsionnykh uravnenii”, Dokl. AN SSSR, 133:2 (1960), 277–280 | MR | Zbl

[6] Tarasov R. P., “Metod chislennogo resheniya dlya odnogo klassa operatornykh uravnenii 1 roda”, Diff. uravn., 13:10 (1977), 1804–1814 | MR | Zbl

[7] Tarasov R. P., Bakaev N. Yu., “Ob odnoi obratnoi zadache”, Funkts. analiz i ego prilozh., 13:4 (1979), 89–90 | MR | Zbl

[8] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 285 pp. | MR

[9] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR

[10] Lavrentev M. M., Uslovno-korrektnye zadachi dlya differentsialnykh uravnenii, Nauka, Novosibirsk, 1973, 71 pp.

[11] Strakhov V. P., “O reshenii lineinykh nekorrektnykh zadach v gilbertovom prostranstve”, Diff. uravn., 6:8 (1970), 1490–1495 | Zbl

[12] Carasso A. S., Sanderson J. G., Hyman J. M., “Digital removal of random media image degradation by solving the diffusion equation backwards in time”, SIAM J. Numer. Anal., 15:2 (1978), 394–367 | DOI | MR

[13] Vainikko G. M., Metody resheniya lineinykh nekorrektno postavlennykh zadach v gilbertovykh prostranstvakh, Tart. gos. un-t, Tartu, 1982, 110 pp. | MR | Zbl

[14] Morozov V. A., “O restavratsii izobrazhenii s garantirovannoi tochnostyu”, Chislennyi analiz na FORTRANe. Metody i algoritmy, MGU, M., 1979, 46–65

[15] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967, 464 pp. | MR

[16] Kato T., Teoriya vozmuschenii lineinykh operatorov, Nauka, M., 1972 | Zbl

[17] Amann H., “Dual semigroups and second order linear elliptic boundary value problems”, Israel J. Math., 15:2,3 (1983), 225–254 | DOI | MR

[18] Companato S., “Generation of analytic semigroups in the Hölder topology by elliptic operators of second order with Neumann boundary condition”, Mathematiche, 35:1,2 (1980), 61–72 | MR

[19] Curarie D., Ron M. A., “Radial bounds for perturbations of elliptic operators”, J. Funct. Anal., 56:1 (1984), 99–123 | DOI | MR

[20] Goldberg S., Smith C. H., “Strongly continuous semigroups of semi-Fredholm operators”, J. of Math. Anal. and Appl., 64 (1978), 407–420 | DOI | MR | Zbl

[21] Piskarëv S. I., “Kompaktnaya skhodimost pri poludiskretnoi approksimatsii differentsialnykh uravnenii pervogo i vtorogo poryadkov”, Vsesoyuz. konf. po asimpt. metodam teorii singulyarno vozmuschennykh uravnenii, II, Alma-Ata, 1979, 56–58

[22] Travis C. C., Webb G. F., “Cosine families and abstract nonlinear second order differential equations”, Acta Math. Scient. Hung., 32:3,4 (1978), 75–96 | DOI | MR | Zbl

[23] Vainikko G. M., Analiz diskretizatsionnykh metodov, Tart. gos. unt, Tartu, 1976, 162 pp. | MR

[24] Alibekov X. N., Sobolevskii P. E., Ob ustoichivosti i skhodimosti raznostnykh skhem vysokogo poryadka approksimatsii dlya parabolicheskikh uravnenii, II, Dep. v VINITI, 1976, No 3645-76, Voronezh, 1976

[25] Smirnitskii Yu. A., Sobolevskii P. E., Potochechnaya otsenka funktsii Grina rezolventy raznostnogo ellipticheskogo operatora s peremennymi koeffitsientami v $\mathbf{R}_n$, Dep. v VINITI, 1982, No 1519-82, Voronezh, 1982

[26] Piskarëv S. I., “Ob otsenkakh skorosti skhodimosti pri poludiskretizatsii evolyutsionnykh uravnenii”, Diff. uravn., 19:12 (1983), 2153–2159 | MR | Zbl

[27] Saff E. B., Varga R. S., “On the zeros and poles of Pade approximations to $e^z$”, Numer. Math., 25 (1975), 1–14 | DOI | MR | Zbl

[28] Saff E. B., Varga R. S., “Geometric convergence of rational approximations to $e^{-z}$ in infinite sectors”, Numer. Math., 26 (1976), 211–225 | DOI | MR | Zbl

[29] Varga R., Funktsionalnyi analiz i teoriya approksimatsii v chislennom analize, Mir, M., 1974, 126 pp. | MR | Zbl

[30] Piskarëv S. I., “Otsenki pogreshnosti pri approksimatsii polugrupp operatorov drobyami Pade”, Izv. VUZov. Matematika, 1979, no. 4, 33–38 | MR | Zbl

[31] Eldén L., “Time discretization in the backward solution of parabolic equations, I”, Math. Comput., 39:159 (1982), 53–68 | DOI | MR | Zbl

[32] Eldén L., “Time discretization in the backward solution of parabolic equation. II”, Math. Comput., 39:159 (1982), 69–84 | DOI | MR | Zbl

[33] Lattes R., Lions Zh.-L., Metod kvaziobrascheniya i ego prilozheniya, Mir, M., 1970 | MR | Zbl

[34] Melnikova I. V., “Metod kvaziobrascheniya dlya abstraktnykh parabolicheskikh uravnenii v banakhovom prostranstve”, Metody resheniya uslovno korrektnykh zadach, Sverdlovsk, 1975, 27–38 | MR

[35] Melnikova I. V., “Reshenie obratnoi zadachi Koshi metodom kvaziobrascheniya”, Izv. VUZov. Matematika, 1981, no. 6, 36–38 | MR

[36] Olver F., Vvedenie v asimptoticheskie metody i spetsialnye funktsii, Nauka, M., 1978, 375 pp. | MR

[37] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, t. II, Nauka, M., 1969

[38] Butzer P. L., Berens H., Semigroups of operators and approximation, New-York, 1967 | MR