Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1988_30_3_a1, author = {F. A. Bogomolov}, title = {The {Brauer} group of quotient spaces by linear group actions}, journal = {Izvestiya. Mathematics }, pages = {455--485}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {1988}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a1/} }
F. A. Bogomolov. The Brauer group of quotient spaces by linear group actions. Izvestiya. Mathematics , Tome 30 (1988) no. 3, pp. 455-485. http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a1/
[1] Beauville A., Colliot-Thelene J. L,. Sansuk J. J., Swinnerton-Dyer P., “Variétés stablement rationales non rationalles”, Ann. of Math., 121:2 (1985), 283–318 | DOI | MR | Zbl
[2] Bogomolov F. A., “Stabilnaya ratsionalnost faktormnogoobrazii dlya odnosvyaznykh grupp”, Matem. sb., 130:1 (1986), 3–17 | MR
[3] Miln Dzh., Etalnye kogomologii, Mir, M., 1983 | MR | Zbl
[4] Saltman D. J., “Noetherśproblem over an algebraically closed field”, Inventiones of Math., 77:1 (1984), 710–84 | MR
[5] Suslin A. A., “Algebraicheskaya $K$-teoriya i gomomorfizm normennogo vycheta”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 25, VINITI AN SSSR, 1984, 115–207
[6] Suslin A. A., “Gomologii $GL$, kharakteristicheskie klassy i $K$-teoriya Milnora”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 165, 1984, 188–204 | MR | Zbl