The Brauer group of quotient spaces by linear group actions
Izvestiya. Mathematics , Tome 30 (1988) no. 3, pp. 455-485.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for a smooth compactification of a quotient space of a linear space $V$ by the action of a linear algebraic group $G$, the Artin–Mumford birational invariant $\operatorname{Br}_v(V/G)=H^3(V/G,Z)_\text{tors}$ is effectively computable in terms of the 2-dimensional group cohomology $H^2(G,Q/Z)$ of $G$; examples of groups for which the invariant $\operatorname{Br}_v(V/G)$ is nontrivial are also studied. Bibliography: 6 titles.
@article{IM2_1988_30_3_a1,
     author = {F. A. Bogomolov},
     title = {The {Brauer} group of quotient spaces by linear group actions},
     journal = {Izvestiya. Mathematics },
     pages = {455--485},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a1/}
}
TY  - JOUR
AU  - F. A. Bogomolov
TI  - The Brauer group of quotient spaces by linear group actions
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 455
EP  - 485
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a1/
LA  - en
ID  - IM2_1988_30_3_a1
ER  - 
%0 Journal Article
%A F. A. Bogomolov
%T The Brauer group of quotient spaces by linear group actions
%J Izvestiya. Mathematics 
%D 1988
%P 455-485
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a1/
%G en
%F IM2_1988_30_3_a1
F. A. Bogomolov. The Brauer group of quotient spaces by linear group actions. Izvestiya. Mathematics , Tome 30 (1988) no. 3, pp. 455-485. http://geodesic.mathdoc.fr/item/IM2_1988_30_3_a1/

[1] Beauville A., Colliot-Thelene J. L,. Sansuk J. J., Swinnerton-Dyer P., “Variétés stablement rationales non rationalles”, Ann. of Math., 121:2 (1985), 283–318 | DOI | MR | Zbl

[2] Bogomolov F. A., “Stabilnaya ratsionalnost faktormnogoobrazii dlya odnosvyaznykh grupp”, Matem. sb., 130:1 (1986), 3–17 | MR

[3] Miln Dzh., Etalnye kogomologii, Mir, M., 1983 | MR | Zbl

[4] Saltman D. J., “Noetherśproblem over an algebraically closed field”, Inventiones of Math., 77:1 (1984), 710–84 | MR

[5] Suslin A. A., “Algebraicheskaya $K$-teoriya i gomomorfizm normennogo vycheta”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 25, VINITI AN SSSR, 1984, 115–207

[6] Suslin A. A., “Gomologii $GL$, kharakteristicheskie klassy i $K$-teoriya Milnora”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 165, 1984, 188–204 | MR | Zbl