On~a~class of extremal problems
Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 411-418.

Voir la notice de l'article provenant de la source Math-Net.Ru

The matrix-valued function $\rho(\lambda,\mu)=\Phi_2(E-\lambda A^*)^{-1}S^{-1}(E-\mu A)^{-1}\Phi_2$ is investigated for operators $S>0$ satisfying the operator identity $AS-SA^*=i\Pi_1/\Pi_1^*$, $\Pi_1=[\Phi_1,\Phi_2]$. Connected with the operator $S$ is the problem of describing the taxation functions (nondecreasing operator-valued functions) $\sigma$ giving the representations $S=\int_{-\infty}^\infty(E-At)^{-1}\Phi_2\,d\sigma(t)\Phi_2^*(E-A^*t)^{-1}$. It is proved that the maximal jump in taxation functions at a point $\lambda_0$ ($\operatorname{Im}{\lambda_0}=0$) is equal to $\rho^{-1}(\lambda_0,\lambda_0)$. The asymptotic behavior of $\rho_k(\lambda_0,\overline\lambda_0)$ for $\operatorname{Im}{\lambda_0}\geqslant0$ as $k\to\infty$ is studied in the case when a sequence of operators $S_k$ acting in spaces $H_k$ ($H_1\subset H_2\subset\cdots$) is given. In the case of Toeplitz matrices $S$ the asymptotic behavior of $\rho_k(\lambda_0, \overline\lambda_0)$ yields the first limit theorem of Szegë. Bibliography: 19 titles.
@article{IM2_1988_30_2_a13,
     author = {A. L. Sakhnovich},
     title = {On~a~class of extremal problems},
     journal = {Izvestiya. Mathematics },
     pages = {411--418},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a13/}
}
TY  - JOUR
AU  - A. L. Sakhnovich
TI  - On~a~class of extremal problems
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 411
EP  - 418
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a13/
LA  - en
ID  - IM2_1988_30_2_a13
ER  - 
%0 Journal Article
%A A. L. Sakhnovich
%T On~a~class of extremal problems
%J Izvestiya. Mathematics 
%D 1988
%P 411-418
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a13/
%G en
%F IM2_1988_30_2_a13
A. L. Sakhnovich. On~a~class of extremal problems. Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 411-418. http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a13/

[1] Sakhnovich L. A., “Zadachi faktorizatsii i operatornye tozhdestva”, Uspekhi matem. nauk, 41:1 (1986), 3–55 | MR | Zbl

[2] Sakhnovich L. A., “Uravneniya s raznostnym yadrom na konechnom otrezke”, Uspekhi matem. nauk, 35:4 (1980), 69–129 | MR | Zbl

[3] Vladimirov V. S., Volovich I. V., “The diofanfme moment problem, orthogonal polinomial and some models of statistical phisics”, Lect. Notes in Math., 1043, Springer-Verlag, Berlin, 1984, 289–292

[4] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1970

[5] Krein M. G., “Neravenstva Chebysheva–Markova v teorii spektralnykh funktsii struny”, Matem. issled., 5:1 (1970), 77–101, Kishinev | MR | Zbl

[6] Potapov V. P., “Osnovnye fakty teorii $J$-nerastyagivayuschikh analiticheskikh matrits-funktsii”, Tezisy dokladov Vsesoyuznoi konferentsii po teorii funktsii kompleksnogo peremennogo, Kharkov, 1971, 170–181

[7] Kovalishina I. V., Potapov V. P., “Indefinitnaya metrika i problema Nevanlinny–Pika”, Dokl. AN Arm. SSR, 59:1 (1974), 17–22 | MR | Zbl

[8] Ivanchenko T. S., Sakhnovich L. A., Operatornyi podkhod k issledovaniyu interpolyatsionnykh problem, Dep. UkrNIINTI, No 701, UK-85

[9] Sakhnovich L. A., “O faktorizatsii operatornoznachnoi peredatochnoi funktsii”, Dokl. AN SSSR, 226:4 (1976), 781–784 | MR | Zbl

[10] Rozanov Yu. A., Statsionarnye sluchainye protsessy, Fizmatgiz, M., 1963 | MR

[11] Arov D. Z., Krein M. G., “Zadacha ob otyskanii minimuma entropii v neopredelennykh problemakh prodolzheniya”, Funkts. analiz i ego prilozh., 15:2 (1981), 73–78 | MR

[12] Arov D. Z., Krein M. G., “O vychislenii entropiinykh funktsionalov i ikh minimumov v neopredelennykh problemakh prodolzheniya”, Acta Scient. Math., 45 (1983), 33–50 | MR | Zbl

[13] Sakhnovich A. L., “Ob odnom metode obrascheniya tëplitsevykh matrits”, Matem. issled., 8:4 (1973), 180–186, Kishinev | MR | Zbl

[14] Sakhnovich A. L., “O prodolzhenii blochnykh tëplitsevykh matrits”, Funkts. analiz i ego prilozh., no. 14, UGPI, Ulyanovsk, 1980, 116–127 | MR | Zbl

[15] Krein M. G., Spitkovskii I. M., “O nekotorykh obobscheniyakh pervoi predelnoi teoremy Segë”, Analysis Math., 9:1 (1983), 23–41 | DOI | MR | Zbl

[16] Krein M. G., Spitkovskii I. M., “O faktorizatsii $\alpha$-sektorialnykh matrits-funktsii na edinichnoi okruzhnosti”, Matem. issled., 4 (1978), 41–63, Kishinev | MR

[17] Vladimirov V. S., Volovich I. V., “Ob odnoi modeli statisticheskoi fiziki”, TMF, 54:1 (1983), 8–22 | MR

[18] Kalmushevskii I. I., “O reshenii nekotorykh integralnykh uravnenii s yadrami, zavisyaschimi ot raznosti i summy argumentov”, Diff. uravneniya, 16:5 (1980), 941–943 | MR

[19] Sakhnovich A. L., Spitkovskii I. M., “O blochno-tëplitsevykh matritsakh i svyazannykh s nimi svoistvakh gaussovoi modeli na poluosi”, TMF, 63:1 (1985), 154–160 | MR | Zbl