On~a~class of extremal problems
Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 411-418

Voir la notice de l'article provenant de la source Math-Net.Ru

The matrix-valued function $\rho(\lambda,\mu)=\Phi_2(E-\lambda A^*)^{-1}S^{-1}(E-\mu A)^{-1}\Phi_2$ is investigated for operators $S>0$ satisfying the operator identity $AS-SA^*=i\Pi_1/\Pi_1^*$, $\Pi_1=[\Phi_1,\Phi_2]$. Connected with the operator $S$ is the problem of describing the taxation functions (nondecreasing operator-valued functions) $\sigma$ giving the representations $S=\int_{-\infty}^\infty(E-At)^{-1}\Phi_2\,d\sigma(t)\Phi_2^*(E-A^*t)^{-1}$. It is proved that the maximal jump in taxation functions at a point $\lambda_0$ ($\operatorname{Im}{\lambda_0}=0$) is equal to $\rho^{-1}(\lambda_0,\lambda_0)$. The asymptotic behavior of $\rho_k(\lambda_0,\overline\lambda_0)$ for $\operatorname{Im}{\lambda_0}\geqslant0$ as $k\to\infty$ is studied in the case when a sequence of operators $S_k$ acting in spaces $H_k$ ($H_1\subset H_2\subset\cdots$) is given. In the case of Toeplitz matrices $S$ the asymptotic behavior of $\rho_k(\lambda_0, \overline\lambda_0)$ yields the first limit theorem of Szegë. Bibliography: 19 titles.
@article{IM2_1988_30_2_a13,
     author = {A. L. Sakhnovich},
     title = {On~a~class of extremal problems},
     journal = {Izvestiya. Mathematics },
     pages = {411--418},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a13/}
}
TY  - JOUR
AU  - A. L. Sakhnovich
TI  - On~a~class of extremal problems
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 411
EP  - 418
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a13/
LA  - en
ID  - IM2_1988_30_2_a13
ER  - 
%0 Journal Article
%A A. L. Sakhnovich
%T On~a~class of extremal problems
%J Izvestiya. Mathematics 
%D 1988
%P 411-418
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a13/
%G en
%F IM2_1988_30_2_a13
A. L. Sakhnovich. On~a~class of extremal problems. Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 411-418. http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a13/