On~the first boundary value problem for nonlinear degenerate elliptic equations
Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 217-244.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to a proof of a general theorem on the existence of a solution of the first boundary value problem for a degenerate Bellman equation. In contrast to other papers the nonlinearity of the equation is used here and leads, for example, to a proof of solvability of the simplest Monge–Ampére equation $\det (u_{xx})=f^d(x)$ for $f \in C^2$, $f\geqslant0$ in a strictly convex region of class $C^3$ with zero data on the boundary. Bibliography: 18 titles.
@article{IM2_1988_30_2_a1,
     author = {N. V. Krylov},
     title = {On~the first boundary value problem for nonlinear degenerate elliptic equations},
     journal = {Izvestiya. Mathematics },
     pages = {217--244},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a1/}
}
TY  - JOUR
AU  - N. V. Krylov
TI  - On~the first boundary value problem for nonlinear degenerate elliptic equations
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 217
EP  - 244
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a1/
LA  - en
ID  - IM2_1988_30_2_a1
ER  - 
%0 Journal Article
%A N. V. Krylov
%T On~the first boundary value problem for nonlinear degenerate elliptic equations
%J Izvestiya. Mathematics 
%D 1988
%P 217-244
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a1/
%G en
%F IM2_1988_30_2_a1
N. V. Krylov. On~the first boundary value problem for nonlinear degenerate elliptic equations. Izvestiya. Mathematics , Tome 30 (1988) no. 2, pp. 217-244. http://geodesic.mathdoc.fr/item/IM2_1988_30_2_a1/

[1] Krylov N. V., Nelineinye ellipticheskie i parabolicheskie uravneniya vtorogo poryadka, Nauka, M., 1985 | MR

[2] Bakelman I. Ya., Geometricheskie metody resheniya ellipticheskikh uravnenii, Nauka, M., 1965 | MR

[3] Caffarelli L., Nirenberg L., Spruck J., “The Dirichlet problem for nonlinear second order elliptic equations. I: Monge–Ampere equation”, Comm. Pure Appl. Math., 37 (1984), 369–402 | DOI | MR | Zbl

[4] Dynkin E. B., Yushkevich A. A., Upravlyaemye markovskie protsessy i ikh prilozheniya, Nauka, M., 1975 | MR

[5] Ivochkina N. M., “Reshenie zadachi Dirikhle dlya nekotorykh uravnenii tipa Monzha–Ampera”, Dokl. AN SSSR, 279:4 (1984), 796–798 | MR | Zbl

[6] Ivochkina N. M., “Opisanie konusov ustoichivosti, porozhdaemykh differentsialnymi operatorami tipa Monzha–Ampera”, Matem. sb., 122:2 (1983), 265–275 | MR

[7] Ivochkina N. M., “Klassicheskaya razreshimost zadachi Dirikhle dlya uravneniya Monzha–Ampera”, Zap. nauchn. sem. LOMI, 131, 1983, 72–79 | MR | Zbl

[8] Krylov N. V., “O nelineinykh uravneniyakh v oblasti”, Uspekhi matem. nauk, 37:4 (1982), 91

[9] Krylov E. V., “O vyrozhdayuschikhsya nelineinykh ellipticheskikh uravneniyakh”, Matem. sb., 120:3 (1983), 311–330 | MR | Zbl

[10] Markus M., Mink X., Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972 | MR

[11] Garding L., “An inequality for hyperbolic polynomials”, J. Math. and Mech., 8:6 (1959), 957–965 | MR | Zbl

[12] Xapdu G. G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948

[13] Krylov N. V., Upravlyaemye protsessy diffuzionnogo tipa, Nauka, M., 1977 | MR

[14] Urbas J. I. E., Elliptic equations of Monge–Ampere type, Thesis, Research Report, Centre for Math. Anal., Australian Nat. Univ., 1984 | Zbl

[15] Caffarelli L., Nirenberg L., Spruck J., “The Dirichlet problem for nonlinear second order elliptic equations. III: Functions of the eigenvalues of the Hessian”, Acta Math., 155:3,4 (1985), 261–301 | DOI | MR | Zbl

[16] Caffarelli L., Nirenberg L., Spruck J., The Dirichlet problem for nonlinear second order elliptic equations, IV, Preprint

[17] Bekkenbakh E., Bellman R., Neravenstva, Mir, M., 1965 | MR

[18] Krylov N. V., “O vyrozhdayuschikhsya uravneniyakh Bellmana”, Uspekhi matem. nauk, 40:5 (1985), 193