The Newton--Leibniz formula on Banach spaces and approximation of functions of an infinite-dimensional argument
Izvestiya. Mathematics , Tome 30 (1988) no. 1, pp. 145-161
Voir la notice de l'article provenant de la source Math-Net.Ru
Properties of integrals over infinite-dimensional nonlinear manifolds are analyzed. A certain double averaging operation is introduced for functions on abstract separable Banach spaces; this operation leads to uniform approximation by smooth (in the Fréchet sense) functions in the case of spaces (and certain other cases).
Bibliography: 10 titles.
@article{IM2_1988_30_1_a7,
author = {A. V. Uglanov},
title = {The {Newton--Leibniz} formula on {Banach} spaces and approximation of functions of an infinite-dimensional argument},
journal = {Izvestiya. Mathematics },
pages = {145--161},
publisher = {mathdoc},
volume = {30},
number = {1},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a7/}
}
TY - JOUR AU - A. V. Uglanov TI - The Newton--Leibniz formula on Banach spaces and approximation of functions of an infinite-dimensional argument JO - Izvestiya. Mathematics PY - 1988 SP - 145 EP - 161 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a7/ LA - en ID - IM2_1988_30_1_a7 ER -
A. V. Uglanov. The Newton--Leibniz formula on Banach spaces and approximation of functions of an infinite-dimensional argument. Izvestiya. Mathematics , Tome 30 (1988) no. 1, pp. 145-161. http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a7/