Nonconstructivizable formal arithmetic structures
Izvestiya. Mathematics , Tome 30 (1988) no. 1, pp. 103-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonconstructivizability of a number of formal arithmetric structures is established in nonstandard models of formal Peano arithmetric ($PA$). Also considered is a formal structure whose constructivizability in a countable nonstandard model of $PA$ depends on the choice of the model. All concrete examples are built on formulas of class $\Delta_1(PA)$. Therefore the standard interpretations are recursive. Bibliography: 12 titles.
@article{IM2_1988_30_1_a5,
     author = {A. A. Tverskoi},
     title = {Nonconstructivizable formal arithmetic structures},
     journal = {Izvestiya. Mathematics },
     pages = {103--122},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a5/}
}
TY  - JOUR
AU  - A. A. Tverskoi
TI  - Nonconstructivizable formal arithmetic structures
JO  - Izvestiya. Mathematics 
PY  - 1988
SP  - 103
EP  - 122
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a5/
LA  - en
ID  - IM2_1988_30_1_a5
ER  - 
%0 Journal Article
%A A. A. Tverskoi
%T Nonconstructivizable formal arithmetic structures
%J Izvestiya. Mathematics 
%D 1988
%P 103-122
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a5/
%G en
%F IM2_1988_30_1_a5
A. A. Tverskoi. Nonconstructivizable formal arithmetic structures. Izvestiya. Mathematics , Tome 30 (1988) no. 1, pp. 103-122. http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a5/

[1] Shenfild Dzh. R., Matematicheskaya logika, Nauka, M., 1975 | MR

[2] Tverskoi A. A., “Issledovanie rekursivnosti i arifmetichnosti signaturnykh funktsii v nestandartnykh modelyakh arifmetiki”, Dokl. AN SSSR, 262:6 (1982), 1325–1328 | MR | Zbl

[3] Härtig K., “Einstellige Funktionen als Grundbegriffe der elementaren Zahientheorie”, Zeitschr. MLGM, 5:3,4 (1959), 209–215 | MR | Zbl

[4] Tverskoi A. A., “O numeruemosti nekotorykh signatur”, Tezisy VI Vsesoyuznoi konferentsii po matematich. logike, Tbilisi, 1982, 184 | Zbl

[5] Soprunov S. F., “Schetnye nestandartnye modeli arifmetiki”, Issledovaniya po teorii mnozhestv i neklassicheskim logikam, Nauka, M., 1976, 157–173 | MR

[6] Stroyan K. D., “Infinitezimalnyi analiz krivykh i poverkhnostei”, Spravochnaya kniga po matematicheskoi logike, chast I. Teoriya modelei, eds. Dzh. Barvaisa, Nauka, M., 1982, 199–234 | MR

[7] Semenov A. L., “Logicheskie teorii odnomestnykh funktsii na naturalnom ryade”, Izv. AN SSSR. Ser. matem., 47:3 (1983), 623–658 | MR

[8] Goncharov S. S., “Konstruktivnykh modelei teoriya”, Matematicheskaya entsiklopediya, t. 2, Sov. entsiklopediya, M., 1979, 1058–1060

[9] Scott D., “On constructing models for arithmetic”, Infinitistic Methods, N.Y., Warsawa, 1961, 235–255 | MR | Zbl

[10] Uspenskii V. A., Semenov A. L, “Teoriya algoritmov: ee osnovnye otkrytiya i prilozheniya”, Algoritmy v sovremennoi matematike i ee prilozheniyakh. Materialy mezhdunarodnogo simpoziuma, chast I (Urgench), eds. A. P. Ershov, D. Knut, SO AN SSSR, Vychisl. tsentr, Novosibirsk, 1982, 99–342

[11] Putnam H., “Decidability and essential undecidability”, J. Symb. Logic, 22:1 (1957), 39–54 | DOI | MR | Zbl

[12] Semenov A. L., “Ob opredelimosti arifmetiki v ee fragmentakh”, Dokl. AN SSSR, 263:1 (1982), 44–47 | MR | Zbl