An estimate of the dimension of the image under a holomorphic mapping of real-analytic hypersurfaces
Izvestiya. Mathematics, Tome 30 (1988) no. 1, pp. 89-102
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that if a holomorphic mapping between two real-analytic hypersurfaces in $\mathbf C^n$ with nondegenerate Levi form has zero Jacobian at some point of the first hypersurface, then the Jacobian is identically zero and the mapping takes some open set in $\mathbf C^n$ into the second surface. An estimate is given for the rank of the mapping, depending on the signature of the Levi form of the second surface. Bibliography: 3 titles.
@article{IM2_1988_30_1_a4,
author = {A. V. Isaev},
title = {An~estimate of the dimension of the image under a~holomorphic mapping of real-analytic hypersurfaces},
journal = {Izvestiya. Mathematics},
pages = {89--102},
year = {1988},
volume = {30},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a4/}
}
A. V. Isaev. An estimate of the dimension of the image under a holomorphic mapping of real-analytic hypersurfaces. Izvestiya. Mathematics, Tome 30 (1988) no. 1, pp. 89-102. http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a4/
[1] Vitushkin L. G., “Veschestvenno-analiticheskie giperpoverkhnosti kompleksnykh mnogoobrazii”, Uspekhi matem. nauk, 40:2 (1985), 3–31 | MR | Zbl
[2] Chern S. S., Moser J. K., “Real Hypersurfaces in Complex Manifolds”, Acta Math., 133 (1974), 219–274 | DOI | MR
[3] Pinchuk S. I., “Ob analiticheskom prodolzhenii golomorfnykh otobrazhenii”, Matem. ob., 98:3,4 (1975), 416–435 | MR | Zbl