On~an~algebra connected with Toeplitz operators in radial tube domains
Izvestiya. Mathematics , Tome 30 (1988) no. 1, pp. 71-88
Voir la notice de l'article provenant de la source Math-Net.Ru
This article is a study of an algebra acting in $L_2^m(\mathbf R^n)$ and obtained by extending the classical algebra of multidimensional singular integral operators with the help of the orthogonal projection $P=F^{-1}\chi(\xi)F$, where $\chi(\xi)$ is the characteristic function of some cone in $\mathbf R^n$, and $F$ and $F^{-1}$ are the direct and inverse Fourier transformations, respectively.
Bibliography: 29 titles.
@article{IM2_1988_30_1_a3,
author = {N. L. Vasilevskii},
title = {On~an~algebra connected with {Toeplitz} operators in radial tube domains},
journal = {Izvestiya. Mathematics },
pages = {71--88},
publisher = {mathdoc},
volume = {30},
number = {1},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a3/}
}
N. L. Vasilevskii. On~an~algebra connected with Toeplitz operators in radial tube domains. Izvestiya. Mathematics , Tome 30 (1988) no. 1, pp. 71-88. http://geodesic.mathdoc.fr/item/IM2_1988_30_1_a3/