A~new identity in the Lie ring of a~free group of prime exponent, and groups without the Hughes property
Izvestiya. Mathematics , Tome 29 (1987) no. 3, pp. 659-676

Voir la notice de l'article provenant de la source Math-Net.Ru

A multilinear identity of degree $3p-2$ is given in explicit form, and it is shown that this identity holds in the associated Lie ring of a free group of prime exponent $p$. It is also shown that if this identity is not a consequence of the known identities of Wall of degree $2p-1$ and the $(p-1)$st Engel identity, there exists a finite $p$-group in which the index of the (nontrivial) Hughes subgroup is $p^3$. Bibliography: 13 titles.
@article{IM2_1987_29_3_a7,
     author = {E. I. Khukhro},
     title = {A~new identity in the {Lie} ring of a~free group of prime exponent, and groups without the {Hughes} property},
     journal = {Izvestiya. Mathematics },
     pages = {659--676},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a7/}
}
TY  - JOUR
AU  - E. I. Khukhro
TI  - A~new identity in the Lie ring of a~free group of prime exponent, and groups without the Hughes property
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 659
EP  - 676
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a7/
LA  - en
ID  - IM2_1987_29_3_a7
ER  - 
%0 Journal Article
%A E. I. Khukhro
%T A~new identity in the Lie ring of a~free group of prime exponent, and groups without the Hughes property
%J Izvestiya. Mathematics 
%D 1987
%P 659-676
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a7/
%G en
%F IM2_1987_29_3_a7
E. I. Khukhro. A~new identity in the Lie ring of a~free group of prime exponent, and groups without the Hughes property. Izvestiya. Mathematics , Tome 29 (1987) no. 3, pp. 659-676. http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a7/