Complex geometry and integral representations in the future tube
Izvestiya. Mathematics , Tome 29 (1987) no. 3, pp. 597-628

Voir la notice de l'article provenant de la source Math-Net.Ru

The complex geometry of the future tube is studied, and in particular it is proved that the boundary of the future tube cannot be holomorphically straightened along the complex light rays. Using the general Cauchy–Fantappiè representation we derive the Cauchy–Bochner and Jost–Lehmann–Dyson integral representations and representations with Levi and Cauchy barriers for holomorphic functions and for solutions of the $\overline\partial$-equation. Bibliography: 26 titles.
@article{IM2_1987_29_3_a5,
     author = {A. G. Sergeev},
     title = {Complex geometry and integral representations in the future tube},
     journal = {Izvestiya. Mathematics },
     pages = {597--628},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a5/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - Complex geometry and integral representations in the future tube
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 597
EP  - 628
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a5/
LA  - en
ID  - IM2_1987_29_3_a5
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T Complex geometry and integral representations in the future tube
%J Izvestiya. Mathematics 
%D 1987
%P 597-628
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a5/
%G en
%F IM2_1987_29_3_a5
A. G. Sergeev. Complex geometry and integral representations in the future tube. Izvestiya. Mathematics , Tome 29 (1987) no. 3, pp. 597-628. http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a5/