Siegel cusp modular forms and cohomology
Izvestiya. Mathematics , Tome 29 (1987) no. 3, pp. 559-586

Voir la notice de l'article provenant de la source Math-Net.Ru

The space of Siegel cusp modular forms is embedded as a direct summand in the cohomology space of the direct image of some locally constant sheaf on the toroidal compactification of the corresponding quotient space of the Siegel upper half-plane. This is a generalization of the classical result of Eichler and Shimura. Bibliography: 11 titles.
@article{IM2_1987_29_3_a3,
     author = {A. Yu. Nenashev},
     title = {Siegel cusp modular forms and cohomology},
     journal = {Izvestiya. Mathematics },
     pages = {559--586},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a3/}
}
TY  - JOUR
AU  - A. Yu. Nenashev
TI  - Siegel cusp modular forms and cohomology
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 559
EP  - 586
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a3/
LA  - en
ID  - IM2_1987_29_3_a3
ER  - 
%0 Journal Article
%A A. Yu. Nenashev
%T Siegel cusp modular forms and cohomology
%J Izvestiya. Mathematics 
%D 1987
%P 559-586
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a3/
%G en
%F IM2_1987_29_3_a3
A. Yu. Nenashev. Siegel cusp modular forms and cohomology. Izvestiya. Mathematics , Tome 29 (1987) no. 3, pp. 559-586. http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a3/