On arithmetic with the notion of ``attainable number''
Izvestiya. Mathematics , Tome 29 (1987) no. 3, pp. 477-510.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author investigates the extension of formal arithmetic by the proposition that a concrete “large” natural number is not attainable. It is shown in the article that although the resulting system is inconsistent, the only formulas in the language of arithmetic which can be derived by “short” proofs are those which are theorems of arithmetic. Bibliography: 10 titles.
@article{IM2_1987_29_3_a0,
     author = {E. S. Bozhich},
     title = {On arithmetic with the notion of ``attainable number''},
     journal = {Izvestiya. Mathematics },
     pages = {477--510},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a0/}
}
TY  - JOUR
AU  - E. S. Bozhich
TI  - On arithmetic with the notion of ``attainable number''
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 477
EP  - 510
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a0/
LA  - en
ID  - IM2_1987_29_3_a0
ER  - 
%0 Journal Article
%A E. S. Bozhich
%T On arithmetic with the notion of ``attainable number''
%J Izvestiya. Mathematics 
%D 1987
%P 477-510
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a0/
%G en
%F IM2_1987_29_3_a0
E. S. Bozhich. On arithmetic with the notion of ``attainable number''. Izvestiya. Mathematics , Tome 29 (1987) no. 3, pp. 477-510. http://geodesic.mathdoc.fr/item/IM2_1987_29_3_a0/

[1] Gavrilenko Yu. V., “Monotonnye teorii dostizhimykh chisel”, Dokl. AN SSSR, 276:1 (1984), 18–22 | MR | Zbl

[2] Orevkov V. P., “Otsenki dlin vyvodov v ischislenii predikatov”, Tezisy III Konferentsii po primeneniyu metodov matematicheskoi logiki, Tallin, 1983, 61–64

[3] Parikh R., “Existence and feasibility in arithmetic”, JSL, 36:3 (1971), 494–508 | DOI | MR | Zbl

[4] Parikh R., “Some result on the length of proofs”, Trans. AMS, 177 (1973), 29–36 | DOI | MR | Zbl

[5] Miyatake T., “On the length of proofs in formal systems”, Tsukuba J. Math., 4:1 (1980), 115–125 | MR | Zbl

[6] Takeuti G., Teoriya dokazatelstv, Mir, M., 1978 | MR

[7] Miyatake T., “On the length of proofs in a formal system of recursive arithmetic”, Logic Symposia (Hakone, 1979/1980), Lecture Notes in Math., 891, Springer, Berlin, 1981, 81–108 | MR

[8] Yukami T., “A theorem on the formalized arithmetic with function symbols $^\prime$ and +”, Tsucuba J. Math., 1 (1977), 195–211 | MR | Zbl

[9] Yukami T., “A note on a formalized arithmetic with functional symbols $^\prime$ and +”, Tsukuba J. Math., 2 (1978), 69–73 | MR | Zbl

[10] Orevkov V. P., “Teoremy, imeyuschie ochen korotkoe dokazatelstvo, mozhno usilit”, Semiotika i informatika, 12 (1979), 37–38