Minimal geodesics of a~torus with a~hole
Izvestiya. Mathematics , Tome 29 (1987) no. 2, pp. 449-457

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a Riemann surface of genus $1$ with one hole. For a given homology class $\alpha\in H_1(R)$, the author determines that homotopy class within $\alpha$ which contains the shortest curve in $\alpha$. It turns out that this homotopy class is uniquely determined independently of the Riemannian metric. A conjecture of H. Cohn is thereby confirmed. Bibliography: 7 titles.
@article{IM2_1987_29_2_a8,
     author = {H. Zieschang},
     title = {Minimal geodesics of a~torus with a~hole},
     journal = {Izvestiya. Mathematics },
     pages = {449--457},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a8/}
}
TY  - JOUR
AU  - H. Zieschang
TI  - Minimal geodesics of a~torus with a~hole
JO  - Izvestiya. Mathematics 
PY  - 1987
SP  - 449
EP  - 457
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a8/
LA  - en
ID  - IM2_1987_29_2_a8
ER  - 
%0 Journal Article
%A H. Zieschang
%T Minimal geodesics of a~torus with a~hole
%J Izvestiya. Mathematics 
%D 1987
%P 449-457
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a8/
%G en
%F IM2_1987_29_2_a8
H. Zieschang. Minimal geodesics of a~torus with a~hole. Izvestiya. Mathematics , Tome 29 (1987) no. 2, pp. 449-457. http://geodesic.mathdoc.fr/item/IM2_1987_29_2_a8/